Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
111
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Three-dimensional rotating flow of Cu–Al2O3/kerosene oil hybrid nanofluid in presence of activation energy and thermal radiation

&
Pages 586-603 | Received 22 Sep 2022, Accepted 09 Nov 2022, Published online: 28 Nov 2022

References

  • S. U. S. Choi, “Enhancing thermal conductivity of liquids with nanoparticles,” ASME Int. Mech. Eng. Congress Expo., vol. 66, pp. 99–105, 1995.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • R. Ellahi, “The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions,” Appl. Math. Model., vol. 37, no. 3, pp. 1451–1467, 2013. DOI: 10.1016/j.apm.2012.04.004.
  • S. S. Ghadikolaei et al., “Investigation on thermophysical properties of TiO2–Cu/H2O hybridnanofluid transport dependent on shape factor in MHD stagnation point flow,” Powder Technol., vol. 322, pp. 428–438, 2017. DOI: 10.1016/j.powtec.2017.09.006.
  • T. Hayat and S. Nadeem, “Heat transfer enhancement with Ag–CuO/water hybrid nanofluid,” Results Phys., vol. 7, pp. 2317–2324, 2017. DOI: 10.1016/j.rinp.2017.06.034.
  • M. N. Rostami, S. Dinarvand, and I. Pop, “Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid,” Chin. J. Phys., vol. 56, no. 5, pp. 2465–2478, 2018. DOI: 10.1016/j.cjph.2018.06.013.
  • S. S. Ghadikolaei, M. Gholinia, M. E. Hoseini, and D. D. Ganji, “Natural convection MHD flow due to MoS2-Ag nanoparticles suspended in C2H6O2-H2O hybrid base fluid with thermal radiation,” J. Taiwan Inst. Chem. Eng., vol. 97, pp. 12–23, 2019. DOI: 10.1016/j.jtice.2019.01.028.
  • M. I. Afridi, M. Qasim, A. N. Khan, and M. Hamdani, “Heat transfer analysis of Cu–Al2O3–Water and Cu–Al2O3–kerosene oil hybrid nanofluids in the presence of frictional heating: using 3-stage Lobatto IIIA Formula,” J Nanofluids, vol. 8, no. 4, pp. 885–891, 2019. DOI: 10.1166/jon.2019.1626.
  • I. Waini, A. Ishak, and I. Pop, “MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge,” Appl. Math. Mech. Engl. Ed., vol. 41, no. 3, pp. 507–520, 2020. DOI: 10.1007/s10483-020-2584-7.
  • S. Mumraiz et al., “Entropy generation in electrical magnetohydrodynamic flow of Al2O3–Cu/H2O hybrid nanofluid with non-uniform heat flux,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2135–2148, 2021. DOI: 10.1007/s10973-020-09603-0.
  • M. Atashafrooz et al., “Three-dimensional analysis of entropy generation for forced convection over an inclined step with presence of solid nanoparticles and magnetic force,” Numer. Heat Transf. A: Appl., vol. 80, no. 6, pp. 318–335, 2021. DOI: 10.1080/10407782.2021.1944579.
  • M. Gamal, M. S. Radwan, I. G. Elgizawy, and M. H. Shedid, “Heat transfer performance and exergy analyses of MgO and ZnO nanofluids using water/ethylene glycol mixture as base fluid,” Numer. Heat Transf. A: Appl., vol. 80, no. 12, pp. 597–616, 2021. DOI: 10.1080/10407782.2021.1962631.
  • X. H. Zhang et al., “The parametric study of hybrid nanofluid flow with heat transition characteristics over a fluctuating spinning disk,” PLoS One, vol. 16, no. 8, p. e0254457, 2021. DOI: 10.1371/journal.pone.0254457.
  • M. Shanmugapriya, R. Sundareswaran, and P. K. Senthil, “Heat and mass transfer enhancement of MHD hybrid nanofluid flow in the presence of activation energy,” Int. J Chem. Eng., vol. 2021, p. 9473226, 2021. DOI: 10.1155/2021/9473226.
  • J. Hasnain and N. Abid, “Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet,” Numer. Heat Transf. A: Appl., 2022. DOI: 10.1080/10407782.2022.2104582.
  • T. Javed, Z. Abbas, M. Sajid, and N. Ali, “Non-similar solution for rotating flow over an exponentially stretching surface,” Int. J. Numer. Methods Heat Fluid Flow, vol. 21, no. 7, pp. 903–908, 2011. DOI: 10.1108/09615531111162855.
  • Z. Shafique, M. Mustafa, and A. Mushtaq, “Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy,” Results Phys., vol. 6, pp. 627–633, 2016. DOI: 10.1016/j.rinp.2016.09.006.
  • T. Hayat and S. Nadeem, “An improvement in heat transfer for rotating flow of hybrid nanofluid: a numerical study,” Can. J. Phys., vol. 96, no. 12, pp. 1420–1430, 2018. DOI: 10.1139/cjp-2017-0801.
  • B. Yao and L. Lian, “A new analysis of the rotationally symmetric flow in the presence of an infinite rotating disk,” Int. J. Mech. Sci., vol. 136, pp. 106–111, 2018. DOI: 10.1016/j.ijmecsci.2017.12.023.
  • A. J. Chamkha, A. S. Dogonchi, and D. D. Ganji, “Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating,” AIP Adv., vol. 9, no. 2, pp. 025103, 2019. DOI: 10.1063/1.5086247.
  • M. Shoaib et al., “Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet,” Sci. Rep., vol. 10, no. 1, p. 18533, 2020. DOI: 10.1038/s41598-020-75254-8.
  • M. I. Khan et al., “Binary chemical reaction with activation energy in rotating flow subject to nonlinear heat flux and heat source/sink,” J. Comput. Des. Eng., vol. 7, no. 3, pp. 279–286, 2020. DOI: 10.1093/jcde/qwaa023.
  • T. Gul et al., “Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk,” Sci. Rep., vol. 11, no. 1, p. 1180, 2021. DOI: 10.1038/s41598-020-80750-y.
  • A. Hussain et al., “A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition,” Case Stud. Therm. Eng,. vol. 26, pp. 101089, 2021. DOI: 10.1016/j.csite.2021.101089.
  • N. V. V. K. Chaitanya and D. Chatterjee, “Mixed convective flow past counter-rotating side-by-side cylinders at low Reynolds number,” Numer. Heat Transf. A: Appl., 2022. DOI: 10.1080/10407782.2022.2084300.
  • Z. Mustafa, T. Javed, T. Hayat, and A. Alsaedi, “Unsteady MHD chemically reactive dissipative flow of nanofluid due to rotating cone,” Numer. Heat Transf. A: Appl., vol. 82, no. 8, pp. 441–454, 2022. DOI: 10.1080/10407782.2022.2079316.
  • F. G. Awad, S. Motsa, and M. Khumalo, “Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy,” PLoS One, vol. 9, no. 9, p. e107622, 2014. DOI: 10.1371/journal.pone.0107622.
  • M. I. Khan et al., “Arrhenius activation energy impact in binary chemically reactive flow of TiO2–Cu–H2O hybrid nanomaterial,” Int. J. Chem. Reactor Eng., vol. 17, no. 3, p. 20180183, 2018. DOI: 10.1515/ijcre-2018-0183.
  • T. Hayat, S. A. Khan, M. I. Khan, and A. Alsaedi, “Impact of activation energy in nonlinear mixed convective chemically reactive flow of third grade nanomaterial by a rotating disk,” Int. J Chem. Reactor Eng., vol. 17, no. 3, pp. 20180170, 2018. DOI: 10.1515/ijcre-2018-0170.
  • M. Dhlamini et al., “Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions,” J. Comput. Des. Eng., vol. 6, no. 2, pp. 149–158, 2019. DOI: 10.1016/j.jcde.2018.07.002.
  • R. Ellahi, A. Zeeshan, F. Hussain, and A. Asadollahi, “Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy,” Symmetry, vol. 11, no. 2, p. 276, 2019. DOI: 10.3390/sym11020276.
  • N. S. Khan, P. Kumam, and P. Thounthong, “Second law analysis with effects of Arrhenius activation energy and binary chemical reaction on nanofluid flow,” Sci. Rep., vol. 10, no. 1, p. 1226, 2020. DOI: 10.1038/s41598-020-57802-4.
  • N. A. Zainal, R. Nazar, K. Naganthran, and I. Pop, “Flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction,” Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 5, pp. 1686–1705, 2022. DOI: 10.1108/HFF-04-2021-0298.
  • S. K. Mondal and D. Pal, “Performance of activation energy and variable thermal conductivity on bioconvection heat transfer of Williamson nanofluid undergoing binarychemical reaction with multiple slip,” Int. J. Ambient Energy, 2021. DOI: 10.1080/01430750.2021.1997811.
  • R. J. P. Gowda et al., “Impact of binary chemical reaction and activation energy on heat and mass transfer of Marangoni driven boundary layer flow of a non-Newtonian nanofluid,” Processes, vol. 9, no. 4, p. 702, 2021. DOI: 10.3390/pr9040702.
  • Z. Iqbal, N. S. Akbar, E. Azhar, and E. N. Maraj, “Performance of hybrid nanofluid (Cu–CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation,” Alexandria Eng. J., vol. 57, no. 3, pp. 1943–1954, 2018. DOI: 10.1016/j.aej.2017.03.047.
  • Z. Shah, E. Bonyah, S. Islam, and T. Gul, “Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet,” AIP Adv., vol. 9, no. 1, p. 015115, 2019. DOI: 10.1063/1.5048078.
  • R. Ellahi, S. M. Sait, N. Shehzad, and Z. Ayaz, “A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation,” Int. J. Numer. Methods Heat Fluid Flow, vol. 30, no. 2, pp. 834–854, 2020. DOI: 10.1108/HFF-06-2019-0506.
  • T. Muhammad, H. Waqas, S. A. Khan, R. Ellahi, and S. M. Sait, “Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 929–944, 2021. DOI: 10.1007/s10973-020-09459-4.
  • A. Asghar et al., “Effect of thermal radiation on three-dimensional magnetized rotating flow of a hybrid nanofluid,” Nanomaterials, vol. 12, no. 9, p. 1566, 2022. DOI: 10.3390/nano12091566.
  • N. S. Wahid et al., “MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect,” Alexandria Eng. J., vol. 31, no. 4, pp. 3323–3333, 2022. DOI: 10.1016/j.aej.2021.08.059.
  • M. P. Prabhugouda, H. D. Shivanandappa, and H. F. Shankar, “Influence of nonlinear thermal radiation on mixed convective hybrid nanofluid flow about a rotating sphere,” Heat Transf., 2022. DOI: 10.1002/htj.22573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.