Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 7
283
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Darcy-Forchheimer flow of Prandtl-Eyring nanofluid subjected to a Riga plate of varying thickness along with Brownian diffusion, thermophoresis and non-uniform heat source/sink effects

&
Pages 732-759 | Received 14 Sep 2022, Accepted 24 Nov 2022, Published online: 19 Dec 2022

References

  • P. Forchheimer, “Wasserbewegung durch boden,” Z. Ver. Dtsch. Ing., vol. 45, pp. 1782 – 8, 1901.
  • M. Muskat, “The flow of homogeneous fluids through porous media,” Soil Sci., vol. 46, no. 2, pp. 169, 1938.
  • M. A. Seddeek, “Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media,” J. Colloid Interface Sci., vol. 293, no. 1, pp. 137–142, 2006. DOI: 10.1016/j.jcis.2005.06.039.
  • S. Chaudhary and P. Kumar, “MHD forced convection boundary layer flow with a flat plate and porous substrate,” Meccanica, vol. 49, no. 1, pp. 69–77, 2014. DOI: 10.1007/s11012-013-9773-0.
  • S. A. Shehzad, F. M. Abbasi, T. Hayat and A. Alsaedi, “Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection,” J. Mol. Liq., vol. 224, pp. 274–278, 2016. DOI: 10.1016/j.molliq.2016.09.109.
  • P. S. Reddy, P. Sreedevi and A. J. Chamkha, “Heat and mass transfer flow of a nanofluid over an inclined plate under enhanced boundary conditions with magnetic field and thermal radiation,” Heat Trans. Asian Res., vol. 46, no. 7, pp. 815–839, 2017. DOI: 10.1002/htj.21245.
  • M. R. Eid, “Thermal characteristics of 3D nanofluid flow over a convectively heated Riga surface in a Darcy–Forchheimer porous material with linear thermal radiation: An optimal analysis,” Arab,” J. Sci. Eng., vol. 45, no. 11, pp. 9803–9814, 2020.
  • N. S. Akbar, “MHD Eyring–Prandtl fluid flow with convective boundary conditions in small intestines,” Int. J. Biomath., vol. 06, no. 05, pp. 1350034, 2013. DOI: 10.1142/S1793524513500344.
  • I. Khan, M. Y. Malik, A. Hussain and T. Salahuddin, “Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet,” Results Phys., vol. 7, pp. 4226–4231, 2017. DOI: 10.1016/j.rinp.2017.10.052.
  • M. Ramzan, M. Bilal and J. D. Chung, “Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction-A numerical approach,” Chinese J. Phys., vol. 55, no. 4, pp. 1663–1673, 2017. DOI: 10.1016/j.cjph.2017.04.014.
  • A. Shafiq, Z. Hammouch and A. Tarub, “Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate,” Therm. Sci. Eng. Prog., vol. 6, pp. 27–33, 2018. DOI: 10.1016/j.tsep.2017.11.005.
  • G. Rasool and T. Zhang, “Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate,” Heliyon, vol. 5, no. 4, pp. e01479, 2019. DOI: 10.1016/j.heliyon.2019.e01479.
  • P. Sreedevi and P. S. Reddy, “Combined influence of Brownian motion and thermophoresis on Maxwell three-dimensional nanofluid flow over stretching sheet with chemical reaction and thermal radiation,” J. Porous Media, vol. 23, no. 4, pp. 327–340, 2020.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Mater. Sci., vol. 231, pp. 99, 1995.
  • Z. Uddin and S. Harmand, “Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium,” Nanoscale Res. Lett., vol. 8, pp. 1, 2013.
  • N. V. Ganesh, Q. M. Al-Mdallal, S. Al Fahel and S. Dadoa, “Riga–Plate flow of γ-Al2O3-water/ethylene glycol with effective Prandtl number impacts,” Heliyon, vol. 5, no. 5, pp. e01651, 2019. DOI: 10.1016/j.heliyon.2019.e01651.
  • S. Chaudhary and K. M. Kanika, “Viscous dissipation and Joule heating in MHD Marangoni boundary layer flow and radiation heat transfer of Cu–water nanofluid along particle shapes over an exponential temperature,” Int. J. Comput. Math., vol. 97, no. 5, pp. 943–958, 2020. DOI: 10.1080/00207160.2019.1601713.
  • S. Chaudhary and K. K. Chouhan, “Ohmic-Viscous Dissipation in MHD Slip Flow of Cu-blood Nanofluid over a Stretching Surface along Nanoparticle Shapes,” Indian J. Pure Appl. Phys., vol. 59, no. 8, pp. 559–568, 2021.
  • P. M. Patil and S. Benawadi, “The quadratic convective flow of Williamson nanofluid with multiple diffusions,” Phys. Scr., vol. 97, no. 6, pp. 065206, 2022. DOI: 10.1088/1402-4896/ac6e0e.
  • P. S. Reddy, P. Sreedevi and A. J. Chamkha, “Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux,” J. Therm. Anal. Calorim., vol. 147, no. 4, pp. 3453–3468, 2022. DOI: 10.1007/s10973-021-10586-9.
  • A. Gailitis, “On the possibility to reduce the hydrodynamic drag of a plate in an electrolyte,” Appl. Magnetohydrodyn. Rep. Inst. Phys. Riga, vol. 13, pp. 143–146, 1961.
  • A. B. Tsinober and A. G. Shtern, “Possibility of increasing the flow stability in a boundary layer by means of crossed electric and magnetic fields,” Magnetohydrodynamics, vol. 3, no. 2, pp. 152–154, 1967.
  • E. Grinberg, “On determination of properties of some potential fields,” Appl. Magnetohydrodyn. Rep. Phys. Inst. Riga, vol. 12, pp. 147–154, 1961.
  • A. Pantokratoras and E. Magyari, “EMHD free-convection boundary-layer flow from a Riga-plate,” J. Eng. Math., vol. 64, no. 3, pp. 303–315, 2009. DOI: 10.1007/s10665-008-9259-6.
  • A. Pantokratoras, “The Blasius and Sakiadis flow along a Riga-plate,” Prog. Comput. Fluid Dyn., vol. 11, no. 5, pp. 329–333, 2011. DOI: 10.1504/PCFD.2011.042184.
  • M. M. Bhatti, T. Abbas and M. M. Rashidi, “Effects of thermal radiation and electromagnetohydrodynamics on viscous nanofluid through a Riga plate,” Multidiscipl. Model. Mater. Struct., vol. 12, no. 4, pp. 605–618, 2016. DOI: 10.1108/MMMS-07-2016-0029.
  • R. Kumar, S. Sood, S. A. Shehzad and M. Sheikholeslami, “Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness,” J. Mol. Liq., vol. 248, pp. 143–152, 2017. DOI: 10.1016/j.molliq.2017.10.018.
  • N. S. Khashi’ie, N. Md Arifin and I. Pop, “Mixed convective stagnation point flow towards a vertical Riga plate in hybrid Cu-Al2O3/water nanofluid,” Mathematics, vol. 8, no. 6, pp. 912, 2020. DOI: 10.3390/math8060912.
  • G. Rasool and A. Wakif, “Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2379–2393, 2021. DOI: 10.1007/s10973-020-09865-8.
  • T. Fang, J. Zhang and Y. Zhong, “Boundary layer flow over a stretching sheet with variable thickness,” Appl. Math. Comput., vol. 218, no. 13, pp. 7241–7252, 2012.
  • T. Hayat, T. Abbas, M. Ayub, M. Farooq and A. Alsaedi, “Flow of nanofluid due to convectively heated Riga plate with variable thickness,” J. Mol. Liq., vol. 222, pp. 854–862, 2016. DOI: 10.1016/j.molliq.2016.07.111.
  • E. M. Abo-Eldahab and M. A. El Aziz, “Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption,” Int. J. Therm. Sci., vol. 43, no. 7, pp. 709–719, 2004. DOI: 10.1016/j.ijthermalsci.2004.01.005.
  • M. S. Abel, P. G. Siddheshwar and M. M. Nandeppanavar, “Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source,” Int. J. Heat Mass Transfer, vol. 50, no. 5–6, pp. 960–966, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.010.
  • G. K. Ramesh, B. J. Gireesha and C. S. Bagewadi, “Heat transfer in MHD dusty boundary layer flow over an inclined stretching sheet with non-uniform heat source/sink,” Adv. Math. Phys., vol. 2012, pp. 1–13, vol2012. DOI: 10.1155/2012/657805.
  • P. Sreedevi, P. S. Reddy and A. J. Chamkha, “Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition,” Int. J. Mech. Sci., vol. 135, pp. 646–655, 2018. DOI: 10.1016/j.ijmecsci.2017.12.007.
  • B. Ramadevi, K. A. Kumar, V. Sugunamma and N. Sandeep, “Influence of non-uniform heat source/sink on the three-dimensional magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier’s law,” Pramana – J. Phys., vol. 93, no. 6, pp. 1–11, 2019. DOI: 10.1007/s12043-019-1847-7.
  • S. Chaudhary and K. M. Kanika, “Heat generation/absorption and radiation effects on hydromagnetic stagnation point flow of nanofluids toward a heated porous stretching/shrinking sheet with suction/injection,” J. Porous Media, vol. 23, no. 1, pp. 27–49, 2020.
  • P. S. Reddy and P. Sreedevi, “Buongiorno’s model nanofluid natural convection inside a square cavity with thermal radiation,” Chin. J. Phys., vol. 72, pp. 327–344, 2021. DOI: 10.1016/j.cjph.2020.08.016.
  • T. Thumma, S. R. Mishra, M. A. Abbas, M. M. Bhatti, M. M and S. I. Abdelsalam, “Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet,” Appl. Math. Comput., vol. 421, pp. 126927, 2022.
  • Z. Ullah, I. Ullah, G. Zaman, H. Khan and T. Muhammad, “Mathematical modeling and thermodynamics of Prandtl–Eyring fluid with radiation effect: A numerical approach,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021. DOI: 10.1038/s41598-021-01463-4.
  • A. Pantokratoras and T. Fang, “Blasius flow with non-linear Rosseland thermal radiation,” Meccanica, vol. 49, no. 6, pp. 1539–1545, 2014. DOI: 10.1007/s11012-014-9911-3.
  • M. S. Abel and M. M. Nandeppanavar, “Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 5, pp. 2120–2131, 2009. DOI: 10.1016/j.cnsns.2008.06.004.
  • K. Loganathan, G. Muhiuddin, A. M. Alanazi, F. S. Alshammari, B. M. Alqurashi and S. Rajan, “Entropy optimization of third-grade nanofluid slip flow embedded in a porous sheet with zero mass flux and a non-Fourier heat flux model,” Front. Phys., vol. 8, pp. 250, 2020. DOI: 10.3389/fphy.2020.00250.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness,” J. Comput. Des. Eng., vol. 5, no. 2, pp. 232–242, 2018. DOI: 10.1016/j.jcde.2017.09.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.