Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 8
120
Views
4
CrossRef citations to date
0
Altmetric
Articles

Particle swarm optimization based numerical study for pressure, flow, and heat transfer over a rotating disk with temperature dependent nanofluid properties

, , ORCID Icon &
Pages 815-844 | Received 16 Sep 2022, Accepted 30 Nov 2022, Published online: 06 Jan 2023

References

  • J. C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1. Oxford, UK: Clarendon Press, 1873.
  • S. U. Choi and J. A. Eastman, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” Argonne National Lab., Lemont, IL, USA, No. ANL/MSD/CP-84938; CONF-951135-29, 1995.
  • D. P. Kulkarni, D. K. Das, and R. S. Vajjha, “Application of nanofluids in heating buildings and reducing pollution,” Appl. Energy, vol. 86, no. 12, pp. 2566–2573, 2009. DOI: 10.1016/j.apenergy.2009.03.021.
  • P. McElfresh, D. Holcomb, and D. Ector, “Application of nanofluid technology to improve recovery in oil and gas wells,” presented at the SPE Inter. Oilfield Nanot. Conf. Exhib., OnePetro, 2012.
  • Z. Uddin and S. Harmand, “Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–19, 2013.
  • M. R. Hajmohammadi, “Assessment of a lubricant based nanofluid application in a rotary system,” Energy Convers. Manag., vol. 146, pp. 78–86, 2017. DOI: 10.1016/j.enconman.2017.04.071.
  • H. D. Koca, S. Doganay, and A. Turgut, “Thermal characteristics and performance of Ag-water nanofluid: application to natural circulation loops,” Energy Convers. Manag., vol. 135, pp. 9–20, 2017. DOI: 10.1016/j.enconman.2016.12.058.
  • A. Mishra, A. K. Pandey, and M. Kumar, “Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation,” Heat Transf. Res., vol. 50, no. 14, pp. 1351–1367, 2019. DOI: 10.1615/HeatTransRes.2018020420.
  • T. Von Kármán, “Uber laminare und turbulente Reibung,” Z. Angew. Math. Mech., vol. 1, no. 4, pp. 233–252, 1921. DOI: 10.1002/zamm.19210010401.
  • E. M. Sparrow and J. L. Gregg, “Mass transfer, flow, and heat transfer about a rotating disk,” J. Heat Transf., vol. 82, no. 4, pp. 294–302, 1960.
  • A. Acrivos, M. J. Shah, and E. E. Petersen, “On the flow of a non‐Newtonian liquid on a rotating disk,” J. Appl. Phys., vol. 31, no. 6, pp. 963–968, 1960. DOI: 10.1063/1.1735785.
  • E. R. Benton, “On the flow due to a rotating disk,” J. Fluid Mech., vol. 24, no. 4, pp. 781–800, 1966. DOI: 10.1017/S0022112066001009.
  • H. A. Attia and A. L. Aboul-Hassan, “On hydromagnetic flow due to a rotating disk,” Appl. Math. Model., vol. 28, no. 12, pp. 1007–1014, 2004. DOI: 10.1016/j.apm.2004.03.004.
  • K. A. Maleque and M. A. Sattar, “The effects of variable properties and Hall current on steady MHD laminar convective fluid flow due to a porous rotating disk,” Int. J. Heat Mass Transf., vol. 48, no. 23–24, pp. 4963–4972, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.05.017.
  • T. Fang, “Flow over a stretchable disk,” Phys. Fluids, vol. 19, no. 12, p. 128105, 2007. DOI: 10.1063/1.2823572.
  • N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer over a rotating porous disk in a nanofluid,” Physica B: Cond. Matter, vol. 406, no. 9, pp. 1767–1772, 2011. DOI: 10.1016/j.physb.2011.02.024.
  • M. Turkyilmazoglu, “MHD fluid flow and heat transfer due to a stretching rotating disk,” Int. J. Therm. Sci., vol. 51, pp. 195–201, 2012. DOI: 10.1016/j.ijthermalsci.2011.08.016.
  • M. Turkyilmazoglu, “MHD fluid flow and heat transfer due to a shrinking rotating disk,” Comput. Fluids, vol. 90, pp. 51–56, 2014. DOI: 10.1016/j.compfluid.2013.11.005.
  • M. Mustafa, “MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model,” Int. J. Heat Mass Transf., vol. 108, pp. 1910–1916, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.064.
  • C. Yin, L. Zheng, C. Zhang, and X. Zhang, “Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction,” Propuls. Power Res., vol. 6, no. 1, pp. 25–30, 2017. DOI: 10.1016/j.jppr.2017.01.004.
  • J. A. Khan, M. Mustafa, T. Hayat, and A. Alsaedi, “A revised model to study the MHD nanofluid flow and heat transfer due to rotating disk: Numerical solutions,” Neural Comput. Appl., vol. 30, no. 3, pp. 957–964, 2018. DOI: 10.1007/s00521-016-2743-4.
  • B. Fallah, “MHD flow and heat transfer of SiC-TiO2/DO hybrid nanofluid due to a permeable spinning disk by a novel algorithm,” J. Appl. Comput. Mech., vol. 5, no. 5, pp. 976–988, 2019.
  • K. Naganthran et al., “Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties,” Physica A: Stat. Mech. Appl., vol. 556, p. 124773, 2020. DOI: 10.1016/j.physa.2020.124773.
  • H. Waqas et al., “Impact of MHD radiative flow of hybrid nanofluid over a rotating disk,” Case Stud. Therm. Eng., vol. 26, p. 101015, 2021. DOI: 10.1016/j.csite.2021.101015.
  • M. G. Reddy et al., “Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy,” Commun. Theor. Phys., vol. 73, no. 4, p. 045002, 2021. DOI: 10.1088/1572-9494/abdaa5.
  • M. S. Iqbal et al., “Influence of carbon nanotubes on heat transfer in MHD nanofluid flow over a stretchable rotating disk: a numerical study,” Heat Transf., vol. 50, no. 1, pp. 619–637, 2021. DOI: 10.1002/htj.21896.
  • H. Upreti et al., “Ohmic heating and non-uniform heat source/sink roles on 3D Darcy–Forchheimer flow of CNTs nanofluids over a stretching surface,” Arab. J. Sci. Eng., vol. 45, no. 9, pp. 7705–7717, 2020.
  • M. K. Nayak et al., “Numerical computation for entropy generation in Darcy–Forchheimer transport of hybrid nanofluids with Cattaneo-Christov double-diffusion,” Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 6, pp. 1861–1882, 2022. DOI: 10.1108/HFF-04-2021-0295.
  • S. K. Sahu et al., “A thermal management of Darcy–Forchheimer SWCNT–MWCNT Cross hybrid nanofluid flow due to vertical stretched cylinder with and without inertia effects,” Waves Random Complex Media, pp. 1–27, 2022. DOI: 10.1080/17455030.2022.2088889.
  • S. S. Samantaray et al., “Darcy–Forchheimer up/downflow of entropy optimized radiative nanofluids with second‐order slip, nonuniform source/sink, and shape effects,” Heat Transf., vol. 51, no. 2, pp. 2318–2342, 2022. DOI: 10.1002/htj.22403.
  • M. K. Nayak et al., “Flow and thermal analysis on Darcy–Forchheimer flow of copper-water nanofluid due to a rotating disk: a static and dynamic approach,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 7387–7408, 2020. DOI: 10.1016/j.jmrt.2020.04.074.
  • M. K. Nayak et al., “Thermodynamic effect in Darcy–Forchheimer nanofluid flow of a single-wall carbon nanotube/multi-wall carbon nanotube suspension due to a stretching/shrinking rotating disk: Buongiorno two-phase model,” J. Eng. Math., vol. 120, no. 1, pp. 43–65, 2020. DOI: 10.1007/s10665-019-10031-9.
  • M. I. Khan, “Transportation of hybrid nanoparticles in forced convective Darcy–Forchheimer flow by a rotating disk,” Int. Commun. Heat Mass Transf., vol. 122, p. 105177, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105177.
  • S. Nadeem, M. Ijaz, and M. Ayub, “Darcy–Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink,” J. Therm. Anal. Calorm., vol. 143, no. 3, pp. 2313–2328, 2021.
  • A. Shafiq, T. N. Sindhu, and Q. M. Al-Mdallal, “A sensitivity study on carbon nanotubes significance in Darcy–Forchheimer flow towards a rotating disk by response surface methodology,” Sci. Rep., vol. 11, no. 1, pp. 1–26, 2021. DOI: 10.1038/s41598-021-87956-8.
  • F. Haider, T. Hayat, and A. Alsaedi, “Flow of hybrid nanofluid through Darcy–Forchheimer porous space with variable characteristics,” Alexandria Eng. J., vol. 60, no. 3, pp. 3047–3056, 2021. DOI: 10.1016/j.aej.2021.01.021.
  • H. Rout et al., “Entropy optimization for Darcy–Forchheimer electro-magneto-hydrodynamic slip flow of ferronanofluid due to stretching/shrinking rotating disk,” Waves Random Complex Media, pp. 1–33, 2021. DOI: 10.1080/17455030.2021.1927238.
  • M. K. Nayak et al., “Entropy optimized Darcy‐Forchheimer slip flow of Fe3O4-CH2OH2 nanofluid past a stretching/shrinking rotating disk,” Heat Transf., vol. 50, no. 3, pp. 2454–2487, 2021. DOI: 10.1002/htj.21987.
  • S. K. Sahu et al., “Darcy–Forchheimer flow behavior and thermal inferences with SWCNT/MWCNT suspensions due to shrinking rotating disk,” Waves Random Complex Media, pp. 1–29, 2022. DOI: 10.1080/17455030.2022.2094496.
  • I. Ullah et al., “Improving the thermal performance of (ZnO-Ni/H2O) hybrid nanofluid flow over a rotating system: The applications of Darcy Forchheimer theory,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2092232.
  • G. Ramasekhar and P. B. A. Reddy, “Entropy generation on EMHD Darcy–Forchheimer flow of Carreau hybrid nanofluid over a permeable rotating disk with radiation and heat generation: homotopy perturbation solution,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., p. 095440892211165, 2022. DOI: 10.1177/09544089221116575.
  • S. L. Goren, “On free convection in water at 4 °C,” Chem. Eng. Sci., vol. 21, no. 6–7, pp. 515–518, 1966. DOI: 10.1016/0009-2509(66)85065-0.
  • K. Vajravelu et al., “Nonlinear convection at a porous flat plate with application to heat transfer from a dike,” J. Math. Anal. Appl., vol. 277, no. 2, pp. 609–623, 2003. DOI: 10.1016/S0022-247X(02)00634-0.
  • K. Thriveni and B. Mahanthesh, “Nonlinear Boussinesq buoyancy driven flow and radiative heat transport of magnetohybrid nanoliquid in an annulus: a statistical framework,” Heat Transf., vol. 49, no. 8, pp. 4759–4782, 2020. DOI: 10.1002/htj.21851.
  • S. Z. Abbas et al., “Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy,” Comput. Methods. Progr. Biomed., vol. 190, p. 105362, 2020. DOI: 10.1016/j.cmpb.2020.105362.
  • B. Mahanthesh and J. Mackolil, “Flow of nanoliquid past a vertical plate with novel quadratic thermal radiation and quadratic Boussinesq approximation: Sensitivity analysis,” Int. Commun. Heat Mass Transf., vol. 120, p. 105040, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105040.
  • B. Mahanthesh, “Quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid flow,” in Mathematical Fluid Mechanics: Advances in Convective Instabilities and Incompressible Fluid Flow. Berlin, Boston: De Gruyter, 2021, pp. 13–54. DOI: 10.1515/9783110696080-002.
  • P. Rana et al., “Heat transfer of TiO2-EG nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation,” Int. Commun. Heat Mass Transf., vol. 126, p. 105443, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105443.
  • O. Mahian et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transf., vol. 65, pp. 514–532, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • A. Abbasi et al., “Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4)-based blood flow via tapered complex wavy curved channel with slip features,” Micromachines, vol. 13, no. 9, p. 1415, 2022. DOI: 10.3390/mi13091415.
  • C. S. Reddy et al., “Numerical analysis of gyrotactic microorganisms in MHD radiative Eyring–Powell nanofluid across a static/moving wedge with Soret and Dufour effects,” J. Appl. Math. Mech., vol. 102, no. 11, p. e202100459, 2022. DOI: 10.1002/zamm.202100459.
  • H. Waqas et al., “Gyrotactic motile microorganisms impact on pseudoplastic nanofluid flow over a moving Riga surface with exponential heat flux,” Crystals, vol. 12, no. 9, p. 1308, 2022. DOI: 10.3390/cryst12091308.
  • Z. Uddin et al., “Steady MHD flow of nano-fluids over a rotating porous disk in the presence of heat generation/absorption: a numerical study using PSO,” J. Appl. Fluid Mech., vol. 10, no. 3, pp. 871–879, 2017. DOI: 10.18869/acadpub.jafm.73.240.26650.
  • Z. Uddin, S. Harmand, and S. Ahmed, “Computational modeling of heat transfer in rotating heat pipes using nanofluids: a numerical study using PSO,” Int. J. Therm. Sci., vol. 100, no. 112, pp. 44–54, 2017.
  • Z. Uddin et al., “Soft computing and statistical approach for sensitivity analysis of heat transfer through the hybrid nanoliquid film in rotating heat pipe,” Sci. Rep., vol. 12, no. 1, pp. 1–23, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.