Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 8
83
Views
0
CrossRef citations to date
0
Altmetric
Articles

Interactions between solid–fluid particles during thermosolutal convection of a rotating cylinder in a cavity

ORCID Icon, & ORCID Icon
Pages 845-859 | Received 27 Sep 2022, Accepted 02 Dec 2022, Published online: 20 Mar 2023

References

  • R. Mohamed, “Double-diffusive convection-radiation interaction on unsteady mhd flow over a vertical moving porous plate with heat generation and soret effects,” App. Math. Sci., vol. 3, pp. 629–651, 2009.
  • E. Brahim and A. Cheddadi, “Flows generated by critical opposing thermosolutal convection in fluid annular cavities,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 50, no. 1, pp. 81–88, 2018.
  • A. Mizev, E. Mosheva and A. Shmyrov, “Double-diffusive convection in the continuous flow microreactors,” J. Phys.: Conf. Ser., vol. 1945, no. 1, pp. 22–26, 2021. DOI: 10.1088/1742-6596/1945/1/012036.
  • Q. Y. Zhu, Y. J. Zhuang and H. Z. Yu, “Three-dimensional numerical investigation on thermosolutal convection of power-law fluids in anisotropic porous media,” Int. J. Heat Mass Trans., vol. 104, pp. 897–917, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.018.
  • B. V. Pushpa, B. M. R. Prasanna, D. Younghae and M. Sankar, “Numerical study of double-diffusive convection in a vertical annular enclosure with a baffle,” J. Phys.: Conf. Ser., vol. 908, no. 1, pp. 12081, 2017.
  • Z. Salman, F. Aiss and M. Almudhaffar, “Experimental study of mixed convection in a cavity with a rotating cylinder,” ARFMTS, vol. 74, no. 2, pp. 16–26, 2020. DOI: 10.37934/arfmts.74.2.1626.
  • E. Azim, et al., “Effect of parameters of rotating cylinders on the heat transfer advancement,” J. Heat Transfer, vol. 144, no. 2, pp. 22601–22612, 2022. DOI: 10.1115/1.4053214.
  • R. W. Lewis and H. R. Ghafouri, “A novel finite element double porosity model for multiphase flow through deformable fractured porous media,” Int. J. Numer. Anal. Meth. Geomech., vol. 21, no. 11, pp. 789–816, 1997. DOI: 10.1002/(SICI)1096-9853(199711)21:11<789::AID-NAG901>3.0.CO;2-C.
  • R. W. Lewis and B. A. Shrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Chichester, England: Wiley, 1998.
  • R. W. Lewis, P. Nithiarasu and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow. United States: John Wiley & Sons, 2004.
  • P. Nithiarasu, R. W. Lewis and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Mass Transfer, 2nd Ed., United States: John Wiley & Sons, 2016, pp. 1–464.
  • T. Nishimura, M. Wakamatsu and A. M. Morega, “Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients,” Int. J. Heat Mass Trans., vol. 41, no. 11, pp. 1601–1611, 1998. DOI: 10.1016/S0017-9310(97)00271-8.
  • R. Nikbakhti and A. B. Rahimi, “Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls,” J. Taiwan Inst. Chemic. Eng., vol. 43, no. 4, pp. 535–541, 2012. DOI: 10.1016/j.jtice.2012.02.010.
  • M. Corcione, M. Cianfrini and A. Quintino, “Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties,” Int. J. Therm. Sci., vol. 71, pp. 182–195, 2013. DOI: 10.1016/j.ijthermalsci.2013.04.005.
  • M. A. Ismael, “Double-diffusive mixed convection in a composite porous enclosure with arc-shaped moving wall: Tortuosity effect,” J. Por. Media, vol. 21, no. 4, pp. 343–362, 2018. DOI: 10.1615/JPorMedia.v21.i4.40.
  • A. M. Aly, “Mixing between solid and fluid particles during natural convection flow of a nanofluid-filled h-shaped cavity with three center gates using ISPH method,” Int. J. Heat Mass Trans., vol. 157, pp. 119803, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119803.
  • Z. A. Raizah, S. E. Ahmed and A. M. Aly, “ISPH simulations of natural convection flow in e-enclosure filled with a nanofluid including homogeneous/heterogeneous porous media and solid particles,” Int. J. Heat Mass Trans., vol. 160, pp. 120153, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120153.
  • F. Selimefendigil, S. O. Coban and H. F. Öztop, “Numerical analysis of heat and mass transfer of a moving porous moist object in a two dimensional channel,” Int. Comm. Heat Mass Trans., vol. 121, pp. 105093, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105093.
  • Z. Raizah, S. El-Sapa and A. M. Aly, “ISPH simulations of thermosolutal convection in an annulus amongst an inner prismatic shape and outer cavity including three circular cylinders,” Case Stud. Therm. Eng., vol. 30, pp. 101736, 2022. DOI: 10.1016/j.csite.2021.101736.
  • S. Hussain, A. M. Aly and H. F. Öztop, “Magneto-bioconvection flow of hybrid nanofluid in the presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle,” Int. Comm. Heat Mass Trans., vol. 134, pp. 106029, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106029.
  • S. Bhowmick, S. C. Saha, M. Qiao and F. Xu, “Transition to a chaotic flow in a V-shaped triangular cavity heated from below,” Int. J. Heat Mass Transfer, vol. 128, pp. 76–86, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.126.
  • Z. A. S. Raizah, A. M. Aly and S. E. Ahmed, “Natural convection flow of a nanofluid-filled V-shaped cavity saturated with a heterogeneous porous medium: Incompressible smoothed particle hydrodynamics analysis,” Ain Shams Eng. J., vol. 12, no. 2, pp. 2033–2046, 2021. DOI: 10.1016/j.asej.2020.09.026.
  • A. Rahimi, M. Sepehr, M. J. Lariche, M. Mesbah, A. Kasaeipoor and E. H. Malekshah, “Analysis of natural convection in nanofluid-filled h-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method,” Phy. E: Low-Dimen. Syst. Nanos., vol. 97, pp. 347–362, 2018. DOI: 10.1016/j.physe.2017.12.003.
  • M. Izadi, R. Mohebbi, D. Karimi and M. A. Sheremet, “Numerical simulation of natural convection heat transfer inside a┴ shaped cavity filled by a MWCNT-Fe3o4/water hybrid nanofluids using LBM,” Chem. Eng. Processing-Process Intens., vol. 125, pp. 56–66, 2018. DOI: 10.1016/j.cep.2018.01.004.
  • G. R. Kefayati, “Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method,” Int. Comm. Heat Mass Transfer, vol. 40, pp. 67–77, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.024.
  • Y. Ma, R. Mohebbi, M. M. Rashidi, Z. Yang and M. A. Sheremet, “Numerical study of MHD nanofluid natural convection in a baffled u-shaped enclosure,” Int. J. Heat Mass Trans., vol. 130, pp. 123–134, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.072.
  • R. Mohebbi, M. Izadi, H. Sajjadi, A. A. Delouei and M. A. Sheremet, “Examining of nanofluid natural convection heat transfer in a γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method,” Physica A: Statis. Mech. App., vol. 526, pp. 120831, 2019. DOI: 10.1016/j.physa.2019.04.067.
  • M. Boussoufi and A. Sabeur, “Natural convective nanofluid flow characteristics with Brownian motion effect in an annular space between confocal elliptic cylinders,” Num. Heat Transfer, Part A: App., pp. 1–16, 2022. In press. DOI: 10.1080/10407782.2022.2102396.
  • M. A. Pakhomov and V. I. Terekhov, “Prediction of turbulent flow characteristics and heat transfer in a dilute droplet-laden flow over a backward-facing step,” Num. Heat Transfer, Part A: App., pp. 1–15, 2022. In press. DOI: 10.1080/10407782.2022.2102318.
  • M. Mahmoodi, A. Sohankar and A. Joulaei, “Investigations of nanofluid flow and heat transfer in a rotating microchannel using single- and two-phase approaches,” Num. Heat Transfer, Part A: App., pp. 1–36, 2022. In press.
  • N. V. V. Krishna Chaitanya and D. Chatterjee, “Mixed convective flow past counter-rotating side-by-side cylinders at low Reynolds number, Num,” Heat Transfer, Part A: App., pp. 1–19, 2022. In press.
  • S. MAni, B. Jang and Y. Do, “Numerical study of non-Darcy natural convection from two discrete heat sources in a vertical annulus,” J. Porous Media, vol. 17, no. 5, pp. 373–390, 2014.
  • R. D. Jagadeesha, B. M. R. Prasanna and M. Sankar, “Double diffusive convection in an inclined parallelogrammic porous enclosure,” Procedia Eng., vol. 127, pp. 1346–1353, 2015. DOI: 10.1016/j.proeng.2015.11.493.
  • M. Sankar, J. Park and Y. Do, “Natural convection in a vertical annuli with discrete heat sources,” Num. Heat Transfer, Part A: App., vol. 59, no. 8, pp. 594–615, 2011. DOI: 10.1080/10407782.2011.561110.
  • R. D. Jagadeesha, B. M. R. Prasanna, D. Younghae and M. Sankar, “Natural convection in an inclined parallelogrammic porous enclosure under the effect of magnetic field,” J. Physics: Conf. Series, vol. 908, no. 1, pp. 12076, 2017.
  • J. R D, B. M. R. Prasanna and M. Sankar, “Numerical simulation of double diffusive magnetoconvection in an inclined parallelogrammic porous enclosure with an internal heat source,” Mater. Today: Proc., vol. 4, no. 9, pp. 10544–10548, 2017.
  • S. Kemparaju, H. A. Kumara Swamy, M. Sankar and F. Mebarek-Oudina, “Impact of thermal and solute source-sink combination on thermosolutal convection in a partially active porous annulus,” Phys. Scr., vol. 97, no. 5, pp. 55206, 2022. DOI: 10.1088/1402-4896/ac6383.
  • M. Mahmoodi, A. A. A. Abbasian, S. S. Mazrouei, S. Nazari and M. Akbari, “Free convection of a nanofluid in a square cavity with a heat source on the bottom wall and partially cooled from sides,” Therm. Sci., vol. 18, no. suppl.2, pp. 283–300, 2014. DOI: 10.2298/TSCI110406011A.
  • M. R. Heydari, M. Hemmat Esfe, M. H. Hajmohammad, M. Akbari and S. S. M. Esforjani, “Mixed convection heat transfer in a double lid-driven inclined square enclosure subjected to cu–water nanofluid with particle diameter of 90 nm,” Heat Trans. Res., vol. 45, no. 1, pp. 75–95, 2014. DOI: 10.1615/HeatTransRes.2013006947.
  • D. Jingxin, H. Huie, S. Xiaohong and L. Yu, “Numerical simulation of penetration behavior of tungsten particle reinforced zirconium matrix amorphous composites projectile,” J. Ordnance Equip. Eng., vol. 42, no. 5, pp. 173–179, 2021.
  • G. Xiang, X. Yihua, S. Haijun, H. Kun, G. Yu and F. Xiping, “Influence of injection method on combustion performance of powder rocket engine,” J. Ordnance Equip. Eng., vol. 20, no. 09, pp. 118–125, 2021.
  • L. Dongwei, W. Feng, D. Jing and Z. Xiaohua, “Effect of high temperature aging on detonation velocity and safety of a RTHL explosive,” J. Ordnance Equip. Eng., vol. 42, no. 11, pp. 247–251, 2021.
  • F. Mabood, T. Yusuf, A. Rashad, W. Khan and H. A. Nabwey, “Effects of combined heat and mass transfer on entropy generation due to mhd nanofluid flow over a rotating frame,” Comp. Mater. Continua, vol. 66, no. 1, pp. 575–587, 2020. DOI: 10.32604/cmc.2020.012505.
  • M. Habibishandiz and Z. Saghir, “MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder,” Int. J. Thermoflu., vol. 14, pp. 100151, 2022. DOI: 10.1016/j.ijft.2022.100151.
  • M. Uddin, S. Rasel, J. Adewole and K. A. Kalbani, “Finite element simulation on the convective double diffusive water-based copper oxide nanofluid flow in a square cavity having vertical wavy surfaces in presence of hydro-magnetic field,” Result. Eng., vol. 13, pp. 100364, 2022. DOI: 10.1016/j.rineng.2022.100364.
  • M. T. Nguyen, A. M. Aly and S.-W. Lee, “Effect of a wavy interface on the natural convection of a nanofluid in a cavity with a partially layered porous medium using the ISPH method,” Num. Heat Transfer, Part A: App., vol. 72, no. 1, pp. 68–88, 2017. DOI: 10.1080/10407782.2017.1353385.
  • A. M. Aly, E. M. Mohamed and N. Alsedais, “The magnetic field on a nanofluid flow within a finned cavity containing solid particles,” Case Stud. Therm. Eng., vol. 25, pp. 100945, 2021. DOI: 10.1016/j.csite.2021.100945.
  • M. T. Nguyen, A. M. Aly and S.-W. Lee, “ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor,” Meccanica, vol. 53, no. 9, pp. 2299–2318, 2018. DOI: 10.1007/s11012-018-0825-3.
  • G. R. Kefayati, “FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field,” Int. J. Therm. Sci., vol. 95, pp. 29–46, 2015. DOI: 10.1016/j.ijthermalsci.2015.03.018.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • T. Mahapatra, B. C. Saha and D. Pal, “Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure,” Comp. Appl. Math., vol. 37, no. 5, pp. 6132–6151, 2018. DOI: 10.1007/s40314-018-0676-5.
  • T. M. Nguyen, A. M. Aly and S.-W. Lee, “Improved wall boundary conditions in the incompressible smoothed particle hydrodynamics method,” HFF, vol. 28, no. 3, pp. 704–725, 2018. DOI: 10.1108/HFF-02-2017-0056.
  • A. M. Aly and Z. A. S. Raizah, “Mixed convection in an inclined nanofluid filled-cavity saturated with a partially layered porous medium,” J. Therm. Sci. Eng. App., vol. 11, no. 4, pp. 41002–41011, 2019.
  • S. J. Lind, R. Xu, P. K. Stansby and B. D. Rogers, “Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves,” J. Comput. Phy., vol. 231, no. 4, pp. 1499–1523, 2012. DOI: 10.1016/j.jcp.2011.10.027.
  • A. Skillen, S. Lind, P. K. Stansby and B. D. Rogers, “Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction,” Comp. Meth. APPl. Mech. Eng., vol. 265, pp. 163–173, 2013. DOI: 10.1016/j.cma.2013.05.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.