Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 8
141
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical study on the cooling performance and inlet mass flow rate per unit area of Ranque–Hilsch vortex tubes with different area ratios

&
Pages 860-875 | Received 21 Sep 2022, Accepted 04 Dec 2022, Published online: 06 Jan 2023

References

  • G. J. Ranque, “Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air,” J. Phys. Radium (Paris), vol. 4, pp. 112–114, 1933.
  • R. Hilsch, “The use of the expansion of gases in a centrifugal field as cooling process,” Rev. Sci. Instrum., vol. 18, no. 2, pp. 108–113, 1947. DOI: 10.1063/1.1740893.
  • B. Zhang and X. Guo, “Prospective applications of Ranque-Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation,” Renew. Sustain. Energy Rev., vol. 89, pp. 135–150, 2018. DOI: 10.1016/j.rser.2018.02.026.
  • S. Eiamsa-Ard and P. Promvonge, “Review of Ranque–Hilsch effects in vortex tubes,” Renew. Sustain. Energy Rev., vol. 12, no. 7, pp. 1822–1842, 2008. DOI: 10.1016/j.rser.2007.03.006.
  • Y. Xue, M. Arjomandi, and R. Kelso, “A critical review of temperature separation in a vortex tube,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1367–1374, 2010. DOI: 10.1016/j.expthermflusci.2010.06.010.
  • K. D. Devade and A. T. Pise, “Issues and prospects of energy separation in vortex tubes: Review,” Heat Transf. Asian Res., vol. 47, no. 3, pp. 461–491, 2018. DOI: 10.1002/htj.21313.
  • M. Yilmaz, M. Kaya, S. Karagoz, and S. Erdogan, “A review on design criteria for vortex tubes,” Heat Mass Transf., vol. 45, no. 5, pp. 613–632, 2009. 2009. DOI: 10.1007/s00231-008-0447-8.
  • S. Subudhi and M. Sen, “Review of Ranque–Hilsch vortex tube experiments using air,” Renew. Sustain. Energy Rev., vol. 52, pp. 172–178, 2015. DOI: 10.1016/j.rser.2015.07.103.
  • J. Lagrandeur, S. Poncet, and M. Sorin, “Review of predictive models for the design of counterflow vortex tubes working with perfect gas,” Int. J. Therm. Sci., vol. 142, pp. 188–204, 2019. DOI: 10.1016/j.ijthermalsci.2019.03.024.
  • B. Zhang, X. Guo, and Z. Yang, “ Analysis on the fluid flow in vortex tube with vortex periodical oscillation characteristics,” Int. J. Heat Mass Tranf., vol. 103, pp. 1166–1175, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.063.
  • X. Guo and B. Zhang, “Computational investigation of precessing vortex breakdown and energy separation in a Ranque–Hilsch vortex tube,” Int. J. Refrig., vol. 85, pp. 42–57, 2018. DOI: 10.1016/j.ijrefrig.2017.09.010.
  • X. Guo and B. Zhang, “Analysis of the unsteady heat and mass transfer processes in a Ranque–Hilsch vortex tube: Tube optimization criteria,” Int. J. Heat Mass Tranf., vol. 127, pp. 68–79, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.088.
  • K. D. Devade and A. Pise, “Parametric Review of Ranque-Hilsch Vortex Tube,” AJHMT, vol. 4, no. 3, pp. 115–145, 2017. DOI: 10.7726/ajhmt.2017.1012.
  • X. Guo, B. Liu, J. Lv, B. Zhang, and Y. Shan, “An optimization method on managing Ranque-Hilsch vortex tube with the synergy between flow structure and performance,” Int. J. Refrig., vol. 126, pp. 123–132, 2021. DOI: 10.1016/j.ijrefrig.2020.12.031.
  • O. Aydin and M. Baki, “An experimental study on the design parameters of a counterflow vortex tube,” Energy, vol. 31, no. 14, pp. 2763–2772, 2006. DOI: 10.1016/j.energy.2005.11.017.
  • S. Mohammadi and F. Farhadi, “Experimental analysis of a Ranque–Hilsch vortex tube for optimizing nozzle numbers and diameter,” Appl. Therm. Eng., vol. 61, no. 2, pp. 500–506, 2013. DOI: 10.1016/j.applthermaleng.2013.07.043.
  • V. Kırmacı and O. Uluer, “The effects of orifice nozzle number on heating and cooling performance of vortex tubes: An experimental study,” Instrum. Sci. Technol., vol. 36, no. 5, pp. 493–502, 2008. DOI: 10.1080/10739140802234923.
  • K. Dincer, S. Baskaya, and B. Z. Uysal, “Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque–Hilsch vortex tubes,” Heat Mass Transf., vol. 44, no. 3, pp. 367–373, 2007. DOI: 10.1007/s00231-007-0241-z.
  • K. Dincer, S. Tasdemir, S. Baskaya, and B. Z. Uysal, “Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque–Hilsch vortex tubes using artificial neural networks,” Appl. Therm. Eng., vol. 28, no. 17–18, pp. 2380–2390, 2008. DOI: 10.1016/j.applthermaleng.2008.01.016.
  • V. Kirmaci, “Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air,” Int. J. Refrig., vol. 32, no. 7, pp. 1626–1633, 2009. DOI: 10.1016/j.ijrefrig.2009.04.007.
  • V. Kırmacı, O. Uluer, and K. Dincer, “An experimental investigation of performance and exergy analysis of a counterflow vortex tube having various nozzle numbers at different inlet pressures of air, oxygen, nitrogen, and argon,” J. Heat Transf., vol. 132, no. 12, p. 121701, 2010. DOI: 10.1115/1.4002284.
  • K. Polat and V. Kırmacı, “Application of the output dependent feature scaling in modeling and prediction of performance of counter flow vortex tube having various nozzles numbers at different inlet pressures of air, oxygen, nitrogen and argon,” Int. J. Refrig., vol. 34, no. 6, pp. 1387–1397, 2011. DOI: 10.1016/j.ijrefrig.2011.03.019.
  • M. O. Hamdan, B. Alsayyed, and E. Elnajjar, “Nozzle parameters affecting vortex tube energy separation performance,” Heat Mass Transf., vol. 49, no. 4, pp. 533–541, 2013. DOI: 10.1007/s00231-012-1099-2.
  • S. E. Rafiee and M. Rahimi, “Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–Validation and CFD optimization,” Energy, vol. 63, pp. 195–204, 2013. DOI: 10.1016/j.energy.2013.09.060.
  • M. Avcı, “The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque–Hilsch vortex tube,” Appl. Therm. Eng., vol. 50, no. 1, pp. 302–308, 2013. DOI: 10.1016/j.applthermaleng.2012.06.048.
  • R. Manimaran, “Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets,” Energy, vol. 123, pp. 564–578, 2017. DOI: 10.1016/j.energy.2017.02.025.
  • R. Shamsoddini and B. Abolpour, “A geometric model for a vortex tube based on numerical analysis to reduce the effect of nozzle number,” Int. J. Refrig., vol. 94, pp. 49–58, 2018. DOI: 10.1016/j.ijrefrig.2018.07.027.
  • M. Attalla, H. Ahmed, M. S. Ahmed, and A. A. El- Wafa, “An experimental study of nozzle number on RanqueHilsch counter-flow vortex tube,” Exp. Therm. Fluid Sci., vol. 82, pp. 381–389, 2017. DOI: 10.1016/j.expthermflusci.2016.11.034.
  • I. Cebeci, V. Kirmaci, and U. Topcuoglu, “The effects of orifice nozzle number and nozzle made of polyamide plastic and aluminum with different inlet pressures on heating and cooling performance of counter flow Ranque–Hılsch vortex tubes: An experimental investigation,” Int. J. Refrig., vol. 72, pp. 140–146, 2016. DOI: 10.1016/j.ijrefrig.2016.07.013.
  • V. Kirmaci and H. Kaya, “Effects of working fluid, nozzle number, nozzle material and connection type on thermal performance of a Ranque–Hilsch vortex tube: A review,” Int. J. Refrig., vol. 91, pp. 254–266, 2018. DOI: 10.1016/j.ijrefrig.2018.05.005.
  • F. Liang, Q. Zeng, G. Tang, L. Xin, Q. Li, and N. Li, “Numerical investigation on the effect of convergent-divergent tube on energy separation characteristic of vortex tube,” Int. Commun. Heat Mass, vol. 133, p. 105927, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105927.
  • K. A. V and V. Nayak, “Analytical investigation on energy separation in Ranque-Hilsch vortex tube,” Numer. Heat Transf. B: Fundam., vol. 80, no. 5–6, pp. 136–154, 2021. DOI: 10.1080/10407790.2021.1969816.
  • A. M. Alsaghir, M. O. Hamdan, and M. F. Orhan, “Evaluating velocity and temperature fields for Ranque–Hilsch vortex tube using numerical simulation,” Int. J. Thermofluids, vol. 10, p. 100074, 2021. DOI: 10.1016/j.ijft.2021.100074.
  • T. Dutta, K. P. Sinhamahapatra, and S. S. Bandyopadhyay, “Experimental and numerical investigation of energy separation in counterflow and uniflow vortex tubes,” Int. J. Refrig., vol. 123, pp. 9–22, 2021. DOI: 10.1016/j.ijrefrig.2020.11.013.
  • A. Khait, V. Bianco, A. Lovtsov, A. Noskov, and V. Alekhin, “Novel transonic nozzle for Ranque-Hilsch vortex tube,” Int. J. Heat Mass Tranf., vol. 180, p. 121801, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121801.
  • J. Lagrandeur, S. Croquer, S. Poncet, and M. Sorin, “A 2D numerical benchmark of an air Ranque-Hilsch vortex tube based on a fractional factorial design,” Int. Commun. Heat Mass, vol. 125, p. 105310, 2021. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105310.
  • R. Manimaran, “Numerical investigations of hydrogen and air mixture with vortex tube and duct combinations,” Int. J. Hydrogen Energy, vol. 46, no. 36, pp. 19140–19157, 2021. DOI: 10.1016/j.ijhydene.2021.03.021.
  • M. Mirjalili and K. Ghorbanian, “Numerical investigation of transient thermo-fluid processes in a Ranque-Hilsch vortex tube,” Int. J. Refrig., vol. 131, pp. 746–755, 2021. DOI: 10.1016/j.ijrefrig.2021.07.025.
  • X. Guo, B. Zhang, and Y. Shan, “Les study on the working mechanism of large-scale precessing vortices and energy separation process of Ranque-Hilsch vortex tube,” Int. J. Therm. Sci., vol. 163, p. 106818, 2021. DOI: 10.1016/j.ijthermalsci.2020.106818.
  • A. Bazgir, A. Heydari, B. Bazooyar, M. Mohammadniakan, and N. Nabhani, “Numerical investigation of the energy separation effect and flow mechanism inside convergent, straight, and divergent double-sleeve RHVT,” Heat Trans. Asian Res., vol. 49, no. 1, pp. 533–564, 2020. DOI: 10.1002/htj.21626.
  • J. Chen, et al., “Numerical investigation of the vortex tube performance in novel precooling methods in the hydrogen fueling station,” Int. J. Hydrogen Energy, vol. 46, no. 7, pp. 5548–5555, 2021. DOI: 10.1016/j.ijhydene.2020.11.070.
  • Z. Hu, R. Li, X. Yang, M. Yang, and Y. Zhang, “Numerical simulation for three-dimensional flow in a vortex tube with different turbulence models,” Numer. Heat Transf. A, Appl., vol. 77, no. 2, pp. 121–133, 2020. DOI: 10.1080/10407782.2019.1688024.
  • A. Bazgir, A. Heydari, and N. Nabhani, “Investigation of the thermal separation in a counter-flow Ranque-Hilsch vortex tube with regard to different fin geometries located inside the cold-tube length,” Int. Commun. Heat Mass, vol. 108, p. 104273, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104273.
  • A. Bazgir, M. Khosravi-Nikou, and A. Heydari, “Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (c-RHVT) by using optimized turbulence model,” Heat Mass Transf., vol. 55, no. 9, pp. 2559–2591, 2019. DOI: 10.1007/s00231-019-02578-1.
  • A. Bazgir, N. Nabhani, B. Bazooyar, and A. Heydari, “Computational fluid dynamic prediction and physical mechanisms consideration of thermal separation and heat transfer processes inside divergent, straight, and convergent Ranque–Hilsch vortex tubes,” J. Heat Transf., vol. 141, no. 10, p. 101701, 2019. DOI: 10.1115/1.4043728.
  • S. Syed and M. Renganathan, “Numerical investigations on flow characteristics and energy separation in a Ranque Hilsch vortex tube with hydrogen as working medium,” Int. J. Hydrogen Energy, vol. 44, no. 51, pp. 27825–27842, 2019. DOI: 10.1016/j.ijhydene.2019.08.239.
  • A. Bazgir and A. Heydari, “Cfd optimization of injection nozzles geometric dimensions of RHVT-machines in order to enhance the cooling capability,” IJHT, vol. 36, no. 3, pp. 1081–1093, 2018. DOI: 10.18280/ijht.360340.
  • A. Bazgir and N. Nabhani, “Investigation of temperature separation inside various models of Ranque–Hilsch vortex tube: Convergent, straight, and divergent with the help of computational fluid dynamic approach,” J. Thers. Sci. Eng. Appl., vol. 10, no. 5, p. 51013, 2018. DOI: 10.1115/1.4039966.
  • A. Bazgir and N. Nabhani, “Computational fluid dynamics comparison of separation performance analysis of uniform and non-uniform counter-flow Ranque-Hilsch vortex tubes (RHVTS),” IJHT, vol. 36, no. 2, pp. 643–656, 2018. DOI: 10.18280/ijht.360229.
  • A. Bazgir and N. Nabhani, “Numerical investigation of the effects of geometrical parameters on the vortex separation phenomenon inside a Ranque-Hilsch vortex tube used as an air separator in a helicopter’s engine,” Aviation, vol. 22, no. 1, pp. 13–23, 2018. DOI: 10.3846/aviation.2018.2414.
  • A. Bazgir, N. Nabhani, and S. Eiamsa-Ard, “Numerical analysis of flow and thermal patterns in a double-pipe Ranque-Hilsch vortex tube: Influence of cooling a hot-tube,” Appl. Therm. Eng., vol. 144, pp. 181–208, 2018. DOI: 10.1016/j.applthermaleng.2018.08.043.
  • J. Chen, R. Zeng, W. Zhang, L. Qiu, and X. Zhang, “Numerical analysis of energy separation in Ranque-Hilsch vortex tube with gaseous hydrogen using real gas model,” Appl. Therm. Eng., vol. 140, pp. 287–294, 2018. DOI: 10.1016/j.applthermaleng.2018.05.017.
  • B. K. Ahlborn, J. U. Keller, and E. Rebhan, “The heat pump in a vortex tube,” J. Non-Equilib. Thermodyn., vol. 23, pp. 159–165, 1998. DOI: 10.1515/jnet.1998.23.2.159.
  • R. Liew, J. C. Zeegers, J. G. Kuerten, and W. R. Michalek, “Maxwell’s demon in the Ranque-Hilsch vortex tube,” Phys. Rev. Lett., vol. 109, p. 54503, 2012.
  • R. Liew, “Droplet behaviour and thermal separation in Ranque-Hilsch vortex tubes,” Ph.D. dissertation, Technische Universiteit Eindhoven, 2013.
  • X. Guo, B. Zhang, L. Li, B. Liu, and T. Fu, “Experimental investigation of flow structure and energy separation of Ranque–Hilsch vortex tube with ldv measurement,” Int. J. Refrig., vol. 101, pp. 106–116, 2019. DOI: 10.1016/j.ijrefrig.2019.02.004.
  • X. Guo, B. Liu, B. Zhang, and Y. Shan, “Analysis on the patterns of precessing frequency characteristics and energy separation processes in a Ranque–Hilsch vortex tube,” Int. J. Therm. Sci., vol. 168, p. 107067, 2021. DOI: 10.1016/j.ijthermalsci.2021.107067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.