Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 8
127
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of forced convection flow characteristics on hydrophobic surface with nanofluid

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 876-899 | Received 14 Oct 2022, Accepted 03 Dec 2022, Published online: 20 Mar 2023

References

  • Y. Zhang et al., “Fabrication of shape-stabilized phase change materials based on waste plastics for energy storage,” J. Energy Storage, vol. 52, p. 104973, 2022. DOI: 10.1016/j.est.2022.104973.
  • K. Shi et al., “Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea,” Energy, vol. 255, p. 124525, 2022. DOI: 10.1016/j.energy.2022.124525.
  • T. Wang et al., “Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement,” Chem. Eng. J., vol. 425, p. 131562, 2021. DOI: 10.1016/j.cej.2021.131562..
  • G. Zhao et al., “Simulation and experiment of secondary contact stiffness of rough surface,” J. Mech. Sci. Technol., vol. 36, no. 3, pp. 1079–1087, 2022. DOI: 10.1007/s12206-022-0201-z.
  • M. Dastmalchi, G. A. Sheikhzadeh, and A. Arefmanesh, “Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm,” Appl. Therm. Eng., vol. 119, pp. 1–9, 2017. DOI: 10.1016/j.applthermaleng.2017.03.025.
  • H. M. Ali, “An experimental study for thermal management using hybrid heat sinks based on organic phase change material, copper foam and heat pipe,” J. Energy Storage, vol. 53, p. 105185, 2022. DOI: 10.1016/j.est.2022.105185.
  • H. Kajiwara, Y. Fujioka, T. Suzuki, and H. Negishi, “An analytical approach for prediction of piston temperature distribution in diesel engines,” JSAE Rev., vol. 23, no. 4, pp. 429–434, 2002. DOI: 10.1016/S0389-4304(02)00234-5.
  • M. R. Ebrahimnataj et al., “The effect of soot accumulation and backpressure of an integrated after-treatment system on diesel engine performance,” J. Therm. Anal. Calorim., vol. 147, no. 15, pp. 8435–8443, 2022. DOI: 10.1007/s10973-021-11135-0.
  • X. Sun, S. Li, G. Lin, and J. Zhang, “Effects of flow-induced vibration on forced convection heat transfer from two tandem circular cylinders in laminar flow,” Int. J. Mech. Sci., vol. 195, p. 106238, 2021. DOI: 10.1016/j.ijmecsci.2020.106238.
  • Z. Zhu, J. Li, H. Peng, and D. Liu, “Nature-inspired structures applied in heat transfer enhancement and drag reduction,” Micromachines, vol. 12, no. 6, p. 656, 2021. DOI: 10.3390/mi12060656.
  • C. Pan, T. Zhang, J. Wang, and Y. Zhou, “CFD study of heat transfer and pressure drop for oscillating flow in helical rectangular channel heat exchanger,” Int. J. Therm. Sci., vol. 129, pp. 106–114, 2018. DOI: 10.1016/j.ijthermalsci.2018.02.035.
  • J. H. Xie, H. C. Cui, Z. C. Liu, and W. Liu, “Optimization design of helical micro fin tubes based on exergy destruction minimization principle,” Appl. Therm. Eng., vol. 200, p. 117640, 2022. DOI: 10.1016/j.applthermaleng.2021.117640.
  • J. Seo, R. García-Mayoral, and A. Mani, “Turbulent flows over superhydrophobic surfaces: Flow-induced capillary waves, and robustness of air–water interfaces,” J. Fluid Mech., vol. 835, pp. 45–85, 2018. DOI: 10.1017/jfm.2017.733.
  • F. Y. Lv and P. Zhang, “Drag reduction and heat transfer characteristics of water flow through the tubes with superhydrophobic surfaces,” Energy Convers. Manag., vol. 113, pp. 165–176, 2016. DOI: 10.1016/j.enconman.2016.01.034.
  • H. Park, C. Choi, and C. Kim, “Superhydrophobic drag reduction in turbulent flows: a critical review,” Exp. Fluids, vol. 62, no. 11, pp. 1–29, 2021. DOI: 10.1007/s00348-021-03322-4.
  • J. Wang, B. Wang, and D. Chen, “Underwater drag reduction by gas,” Friction, vol. 2, no. 4, pp. 295–309, 2014. DOI: 10.1007/s40544-014-0070-2.
  • S. Martin and B. Bhushan, “Fluid flow analysis of a shark-inspired microstructure,” J. Fluid Mech., vol. 756, pp. 5–29, 2014. DOI: 10.1017/jfm.2014.447.
  • Y. Cheng, J. Xu, and Y. Sui, “Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling,” Appl. Therm. Eng., vol. 88, pp. 71–81, 2015. DOI: 10.1016/j.applthermaleng.2014.10.058.
  • X. Lv et al., “Study on the law of pseudo-cavitation on superhydrophobic surface in turbulent flow field of backward-facing step,” Fluids, vol. 6, no. 6, p. 200, 2021. DOI: 10.3390/fluids6060200.
  • X. Zhang, L. Wang, and E. Levänen, “Superhydrophobic surfaces for the reduction of bacterial adhesion,” RSC Adv., vol. 3, no. 30, p. 12003, 2013. DOI: 10.1039/c3ra40497h.
  • A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc., vol. 40, pp. 546–551, 1944. DOI: 10.1039/tf9444000546.
  • A. Rastegari and R. Akhavan, “On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows,” J. Fluid Mech., vol. 864, pp. 327–347, 2019. DOI: 10.1017/jfm.2018.1027.
  • J. Ou, B. Perot, and J. P. Rothstein, “Laminar drag reduction in microchannels using ultrahydrophobic surfaces,” Phys. Fluids, vol. 16, no. 12, pp. 4635–4643, 2004. DOI: 10.1017/jfm.2018.1027.
  • T. G. Min and J. Kim, “Effects of hydrophobic surface on skin-friction drag,” Phys. Fluids, vol. 16, no. 7, pp. L55–L58, 2004. DOI: 10.1063/1.1755723.
  • M. B. Martell, J. P. Rothstein, and J. B. Perot, “An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation,” Phys. Fluids, vol. 22, no. 6, p. 065102, 2010. DOI: 10.1063/1.3432514.
  • M. P. Joseph, G. Mathew, G. G. Krishnaraj, D. Dilip, and S. K. Ranjith, “Numerical simulation of liquid–gas interface formation in long superhydrophobic microchannels with transverse ribs and grooves,” Exp. Comput. Multiph. Flow, vol. 2, no. 3, pp. 162–173, 2020. DOI: 10.1007/s42757-019-0043-9.
  • P. A. Fuaad and K. Arul Prakash, “Slip effects on turbulent heat transport over post and ridge structured superhydrophobic surfaces,” Int. J. Heat Mass Transf., vol. 122, pp. 31–44, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.092.
  • M. G. Arun, D. Dilip, and S. K. Ranjith, “Effect of interface curvature on isothermal heat transfer in a hydrophobic microchannel with transverse ribs and cavities,” Int. J. Therm. Sci., vol. 167, p. 107014, 2021. DOI: 10.1016/j.ijthermalsci.2021.107014.
  • C. Wu, Y. Huang, L. Kuo, and P. Chen, “The effects of boundary wettability on turbulent natural convection heat transfer in a rectangular enclosure,” Int. J. Heat Mass Transf., vol. 63, pp. 249–254, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.005.
  • A. Behzadmehr, M. Saffar-Avval, and N. Galanis, “Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach,” Int. J. Heat Fluid Flow, vol. 28, no. 2, pp. 211–219, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.04.006.
  • M. Kalteh et al., “Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink,” Appl. Therm. Eng., vol. 36, pp. 260–268, 2012. DOI: 10.1016/j.applthermaleng.2011.10.023.
  • S. M. Parsa et al., “Effect of Ag, Au, TiO2 metallic/metal oxide nanoparticles in double-slope solar stills via thermodynamic and environmental analysis,” J. Clean. Prod., vol. 311, p. 127689, 2021. DOI: 10.1016/j.jclepro.2021.127689.
  • K. Apmann, R. Fulmer, A. Soto, and S. Vafaei, “Thermal conductivity and viscosity: review and optimization of effects of nanoparticles,” Materials, vol. 14, no. 5, p. 1291, 2021. DOI: 10.3390/ma14051291.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf., vol. 11, no. 2, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.
  • D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transf., vol. 47, no. 24, pp. 5181–5188, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.07.012.
  • A. Moshfegh, A. Abouei Mehrizi, A. Javadzadegan, M. Joshaghani, and O. Ghasemi-Fare, “Numerical investigation of various nanofluid heat transfers in microchannel under the effect of partial magnetic field: lattice Boltzmann approach,” J. Therm. Anal. Calorim., vol. 140, no. 2, pp. 773–787, 2020. DOI: 10.1007/s10973-019-08862-w.
  • A. A. Mehrizi, F. Besharati, O. Jahanian, and H. Hassanzadeh Afrouzi, “Numerical investigation of conjugate heat transfer in a microchannel with a hydrophobic surface utilizing nanofluids under a magnetic field,” Phys. Fluids, vol. 33, no. 5, p. 052002, 2021. DOI: 10.1063/5.0052398.
  • D. Gao et al., “Hydrophobic surface-assisted SiO2/DI-water nanofluids for enhancing heat transfer and reducing flow resistance,” Nanotechnology, vol. 32, no. 12, p. 125402, 2021. DOI: 10.1088/1361-6528/abd0b3.
  • K. Mao et al., “Numerical simulation of forced convection heat transfer mechanism and comprehensive performance on hydrophobic structure surface,” Int. J. Therm. Sci., vol. 184, p. 107895, 2023. DOI: 10.1016/j.ijthermalsci.2022.107895.
  • W. Chenfei, “A CFD study on Turbulence Drag Reduction with Superhydrophobic Riblets,” M.D. dissertation, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China, 2020.
  • M. Monfared, A. Shahsavar, and M. R. Bahrebar, “Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1521–1532, 2019. DOI: 10.1007/s10973-018-7708-7.
  • L. Schiller and A. Neumann, “A drag coefficient correlation,” Vdi Zeitung., vol. 77, p. 51, 1935.
  • W. Ren et al., “Heat transfer enhancement and drag reduction in transverse groove-bounded microchannels with offset,” Int. J. Therm. Sci., vol. 130, pp. 240–255, 2018. DOI: 10.1016/j.ijthermalsci.2018.04.025.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat-transfer surfaces in heat-exchanger design,” Int. J. Heat Mass Transf., vol. 24, no. 4, pp. 715–726, 1981. DOI: 10.1016/0017-9310(81)90015-6.
  • M. M. Heyhat, F. Kowsary, A. M. Rashidi, S. A. V. Esfehani, and A. Amrollahi, “Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime,” Int. Commun. Heat Mass Transf., vol. 39, no. 8, pp. 1272–1278, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.06.024.
  • H. E. Patel, T. Sundararajan, and S. K. Das, “An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids,” J. Nanopart. Res., vol. 12, no. 3, pp. 1015–1031, 2010. DOI: 10.1007/s11051-009-9658-2.
  • K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” Int. J. Heat Mass Transf., vol. 54, no. 19–20, pp. 4410–4428, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.048.
  • R. B. Dean, “Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow,” J. Fluids Eng., vol. 100, pp. 215–23, 1978. DOI: 10.1115/1.3448633.
  • R. J. Daniello, N. E. Waterhouse, and J. P. Rothstein, “Drag reduction in turbulent flows over superhydrophobic surfaces,” Phys. Fluids, vol. 21, no. 8, p. 085103, 2009. DOI: 10.1063/1.3207885.
  • W. Ji, D. Zhang, Y. He, and W. Tao, “Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes? An extension of Gnielinski equation,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp. 1375–1384, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.08.028.
  • V. Gnielinski, “New equations for heat and mass-transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, pp. 359–368, 1976.
  • M. Hejazian, M. K. Moraveji, and A. Beheshti, “Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube,” Int. Commun. Heat Mass Transf., vol. 52, pp. 152–158, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.01.022.
  • T. Teng, Y. Hung, C. Jwo, C. Chen, and L. Jeng, “Pressure drop of TiO2 nanofluid in circular pipes,” Particuology, vol. 9, no. 5, pp. 486–491, 2011. DOI: 10.1016/j.partic.2011.05.001.
  • W. Peng, “The fundamental research on the heat transfer enhancement of nanofluids inside the piston cooling gallery of internal combustion engines,” Ph.D. dissertation, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China, 2015.
  • V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Appl. Therm. Eng., vol. 29, no. 17–18, pp. 3632–3642, 2009. DOI: 10.1016/j.applthermaleng.2009.06.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.