Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 8
151
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigation of the optimal configuration of a highly conductive material embedded in a triangular fin

, , &
Pages 919-934 | Received 03 Oct 2022, Accepted 29 Nov 2022, Published online: 11 Jan 2023

References

  • R. Bahru, M. F. M. A. Zamri, A. H. Shamsuddin, and M. A. Mohamed, “Simulation design for thermal model from various materials in electronic devices: a review,” Numer. Heat Transf. A: Appl., vol. 82, no. 10, pp. 640–665, 2022. DOI: 10.1080/10407782.2022.2083842.
  • M. R. Hajmohammadi, M. Mohammadifar, and M. Ahmadian-Elmi, “Optimal placement and sizing of heat sink attachments on a heat-generating piece for minimization of peak temperature,” Thermochim. Acta, vol. 689, p. 178645, Mar. 2020. DOI: 10.1016/j.tca.2020.178645.
  • Y. Li et al., “Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system,” Numer. Heat Transf. A: Appl., vol. 75, no. 3, pp. 183–199, 2019. DOI: 10.1080/10407782.2019.1580956.
  • Z. Gao et al., “Thermal performance investigation of supercritical methane in minichannel heat sink on flight vehicle actuator under geometry effect of cross section,” Numer. Heat Transf. A: Appl., pp. 1–16, 2022. DOI: 10.1080/10407782.2022.2091374.
  • R. Mohammadi and N. Shahkarami, “Performance improvement of rectangular microchannel heat sinks using nanofluids and wavy channels,” Numer. Heat Transf. A: Appl., vol. 82, no. 10, pp. 619–639, 2022. DOI: 10.1080/10407782.2022.2083840.
  • A. Ghahremannezhad, H. Xu, M. Alhuyi Nazari, M. H. Ahmadi, and K. Vafai, “Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks,” Int. J. Heat Mass Transf., vol. 131, pp. 52–63, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.040.
  • M. S. Lori and K. Vafai, “Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs,” Appl. Therm. Eng., vol. 205, p. 118059, 2022. DOI: 10.1016/j.applthermaleng.2022.118059.
  • S. Lu and K. Vafai, “A comparative analysis of innovative microchannel heat sinks for electronic cooling,” Int. Commun. Heat Mass Transf., vol. 76, pp. 271–284, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.04.024.
  • A. Ghahremannezhad and K. Vafai, “Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates,” Int. J. Heat Mass Transf., vol. 122, pp. 1313–1326, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.024.
  • P. Lu, X. Yan, R. Wu, S. Wang, and H. Huang, “Numerical simulation and conceptual design of an MW-grade space heat pipe radiator,” Numer. Heat Transf. A: Appl., pp. 1–12, 2022. DOI: 10.1080/10407782.2022.2107367.
  • S. Lu and K. Vafai, “Optimization of the thermal performance of three-dimensional integrated circuits utilizing rectangular-shaped and disk-shaped heat pipes,” J. Heat Transf., vol. 144, no. 6, p. 061901, Mar. 2022. DOI: 10.1115/1.4053803.
  • M. H. Zolfagharnasab, M. Z. Pedram, and K. Vafai, “A robust single-phase approach for the numerical simulation of heat pipe,” Int. Commun. Heat Mass Transf., vol. 132, p. 105894, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105894.
  • M. Ghanbarpour, R. Khodabandeh, and K. Vafai, “An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid,” Heat Mass Transf., vol. 53, no. 3, pp. 973–983, 2017. DOI: 10.1007/s00231-016-1871-9.
  • K. Alizad, K. Vafai, and M. Shafahi, “Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids,” Int. J. Heat Mass Transf., vol. 55, no. 1–3, pp. 140–155, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.08.050.
  • M. Shafahi, V. Bianco, K. Vafai, and O. Manca, “Thermal performance of flat-shaped heat pipes using nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 7–8, pp. 1438–1445, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.007.
  • M. Shafahi, V. Bianco, K. Vafai, and O. Manca, “An investigation of the thermal performance of cylindrical heat pipes using nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 376–383, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.019.
  • G. M. Mauro, M. Iasiello, N. Bianco, W. K. S. Chiu, and V. Naso, “Mono- and multi-objective CFD optimization of graded foam-filled channels,” Materials, vol. 15, no. 3, p. 968, 2022. DOI: 10.3390/ma15030968.
  • A. Haghighi, A. Albojamal, and K. Vafai, “Heat removal enhancement in a channel with a single or an array of metallic foam obstacles,” Int. J. Therm. Sci., vol. 149, p. 106057, 2020. DOI: 10.1016/j.ijthermalsci.2019.106057.
  • M. A. E. Moghaddam, M. R. Hassani Soukht Abandani, K. Hosseinzadeh, M. B. Shafii, and D. D. Ganji, “Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution,” Theor. Appl. Mech. Lett., vol. 12, no. 2, p. 100332, Feb. 2022. DOI: 10.1016/j.taml.2022.100332.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron. Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • J. Gao, Z. Hu, Q. Yang, X. Liang, and H. Wu, “Fluid flow and heat transfer in microchannel heat sinks: modelling review and recent progress,” Therm. Sci. Eng. Prog., vol. 29, p. 101203, 2022. DOI: 10.1016/j.tsep.2022.101203.
  • L. Liu, Z. Cao, C. Xu, L. Zhang, and T. Sun, “Investigation of fluid flow and heat transfer characteristics in a microchannel heat sink with double-layered staggered cavities,” Int. J. Heat Mass Transf., vol. 187, p. 122535, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122535.
  • Q. Zhu et al., “Heat transfer enhancement for microchannel heat sink by strengthening fluids mixing with backward right-angled trapezoidal grooves in channel sidewalls,” Int. Commun. Heat Mass Transf., vol. 135, p. 106106, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106106.
  • Z. Zhan et al., “Numerical study on heat transfer enhancement by viscoelastic fluid pulsating laminar flow in rectangular microchannel heat sinks,” Appl. Therm. Eng., vol. 213, p. 118734, May 2022. DOI: 10.1016/j.applthermaleng.2022.118734.
  • K. Derakhshanpour, R. Kamali, and M. Eslami, “Effect of rib shape and fillet radius on thermal-hydrodynamic performance of microchannel heat sinks: a CFD study,” Int. Commun. Heat Mass Transf., vol. 119, p. 104928, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104928.
  • D. Bastakoti, H. Zhang, D. Li, W. Cai, and F. Li, “An overview on the developing trend of pulsating heat pipe and its performance,” Appl. Therm. Eng., vol. 141, pp. 305–332, Aug. 2018. DOI: 10.1016/j.applthermaleng.2018.05.121.
  • X. Huang, C. Shi, J. Zhou, X. Lu, and G. Xu, “Performance analysis and design optimization of heat pipe sink with a variable height fin array under natural convection,” Appl. Therm. Eng., vol. 159, p. 113939, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.113939.
  • L. He et al., “Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis,” Int. J. Heat Mass Transf., vol. 182, p. 121924, Jan. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.121924.
  • B. Tiwary, R. Kumar, P. S. Lee, and P. K. Singh, “Numerical investigation of thermal and hydraulic performance in novel oblique geometry using nanofluid,” Numer. Heat Transf. A: Appl., vol. 76, no. 7, pp. 533–551, 2019. DOI: 10.1080/10407782.2019.1642076.
  • M. Mahmoodi, A. Sohankar, and A. Joulaei, “Investigations of nanofluid flow and heat transfer in a rotating microchannel using single- and two-phase approaches,” Numer. Heat Transf. A: Appl., pp. 1–36, 2022. DOI: 10.1080/10407782.2022.2083886.
  • Z. Yang, X. Luo, G. Wang, B. Guan, and H. Yang, “Numerical study on the effects of supercritical CO2-based nanofluid on heat transfer deterioration,” Numer. Heat Transf. A: Appl., vol. 82, pp. 1–24, 2022. DOI: 10.1080/10407782.2022.2068880.
  • K. Khanafer and K. Vafai, “A review on the applications of nanofluids in solar energy field,” Renew. Energy, vol. 123, pp. 398–406, 2018. DOI: 10.1016/j.renene.2018.01.097.
  • K. Hosseinzadeh et al., “Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system,” Alexandria Eng. J., vol. 60, no. 1, pp. 1967–1979, Feb. 2021. DOI: 10.1016/j.aej.2020.12.001.
  • K. Hosseinzadeh, E. Montazer, M. B. Shafii, and A. R. D. Ganji, “Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles,” J. Energy Storage, vol. 34, p. 102177, Feb. 2021. DOI: 10.1016/j.est.2020.102177.
  • K. Hosseinzadeh, M. A. E. Moghaddam, A. Asadi, A. R. Mogharrebi, and D. D. Ganji, “Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation,” Renew. Energy, vol. 154, pp. 497–507, Jul. 2020. DOI: 10.1016/j.est.2020.102177.
  • K. Hosseinzadeh, A. R. Mogharrebi, A. Asadi, M. Paikar, and D. D. Ganji, “Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system,” J. Mol. Liq., vol. 300, p. 112347, Feb. 2020. DOI: 10.1016/j.molliq.2019.112347.
  • A. M. Ali, M. Angelino, and A. Rona, “Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins,” Appl. Therm. Eng., vol. 198, p. 117458, Jul. 2021. DOI: 10.1016/j.applthermaleng.2021.117458.
  • R. Vinoth and B. Sachuthananthan, “Flow and heat transfer behavior of hybrid nanofluid through microchannel with two different channels,” Int. Commun. Heat Mass Transf., vol. 123, p. 105194, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105194.
  • A. A. A. A. Al-Rashed et al., “Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink,” Int. Commun. Heat Mass Transf., vol. 104, pp. 118–126, Mar. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.03.007.
  • A. G. Olabi et al., “Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers,” Int. J. Thermofluids, vol. 10, p. 100072, 2021. DOI: 10.1016/j.ijft.2021.100072.
  • S. D. Farahani, M. Farahani, and D. Ghanbari, “Heat transfer from R134a/oil boiling flow in pipe: internal helical fin and hybrid nanoparticles,” Chem. Eng. Res. Des., vol. 175, pp. 75–84, 2021. DOI: 10.1016/j.cherd.2021.08.035.
  • A. L. Teh, Y. W. Phoo, W. M. Chin, E. H. Ooi, and J. J. Foo, “Forced convective heat transfer enhancement of 90° bend plate-fin heat sink with grid generated turbulence,” Chem. Eng. Res. Des., vol. 156, pp. 226–239, 2020. DOI: 10.1016/j.cherd.2019.12.004.
  • M. Fallah Najafabadi, H. Talebi Rostami, K. Hosseinzadeh, and D. D. Ganji, “Thermal analysis of a moving fin using the radial basis function approximation,” Heat Transf., vol. 50, no. 8, pp. 7553–7567, 2021. DOI: 10.1002/htj.22242.
  • S. A. Atouei et al., “Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods,” Appl. Therm. Eng., vol. 89, pp. 299–305, Oct. 2015. DOI: 10.1016/j.applthermaleng.2015.05.084.
  • Y. Pan, R. Zhao, Y. Nian, and W. Cheng, “Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink,” Int. J. Heat Mass Transf., vol. 183, p. 122052, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122052.
  • Y. Cao, M. A. El-Shorbagy, K. Sharma, A. A. Aly, and B. F. Felemban, “Role of beryllium oxide on the thermal efficiency of microchannel heat exchanger with an optimum fin structure,” Ceram. Int., vol. 48, no. 7, pp. 9973–9986, 2022. DOI: 10.1016/j.ceramint.2021.12.204.
  • X. Ma et al., “Flow boiling instability and pressure drop characteristics based on micro-pin-finned surfaces in a microchannel heat sink,” Int. J. Heat Mass Transf., vol. 195, p. 123168, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123168.
  • C. Chen, F. Li, X. Wang, J. Zhang, and G. Xin, “Improvement of flow and heat transfer performance of manifold microchannel with porous fins,” Appl. Therm. Eng., vol. 206, p. 118129, 2022. DOI: 10.1016/j.applthermaleng.2022.118129.
  • S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi, and D. D. Ganji, “Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections,” Case Stud. Therm. Eng., vol. 30, p. 101757, 2022. DOI: 10.1016/j.csite.2022.101757.
  • A. Bejan, “Constructal-theory network of conducting paths for cooling a heat generating volume,” Int. J. Heat Mass Transf., vol. 40, no. 4, pp. 799–816, 1997. DOI: 10.1016/0017-9310(96)00175-5.
  • M. Almogbel and A. Bejan, “Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction,” Int. J. Heat Mass Transf., vol. 44, no. 22, pp. 4185–4194, 2001. DOI: 10.1016/S0017-9310(01)00080-1.
  • R. Dadsetani, G. A. Sheikhzade, M. R. Hajmohammadi, and M. R. Safaei, “Introduce a novel configuration of microchannel and high-conductivity inserts for cooling of disc-shaped electronic components,” Int. J. Numer. Methods Heat Fluid Flow, vol. 30, no. 6, pp. 2845–2859, 2019. DOI: 10.1108/hff-02-2019-0105.
  • R. Dadsetani et al., “Thermal and mechanical design of tangential hybrid microchannel and high-conductivity inserts for cooling of disk-shaped electronic components,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2125–2133, 2021. DOI: 10.1007/s10973-020-10232-w.
  • J. You, H. Feng, L. Chen, and Z. Xie, “Heat conduction constructal optimization for nonuniform heat generating area based on triangular element,” Int. J. Heat Mass Transf., vol. 117, pp. 896–902, Feb. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.032.
  • K. Sun, H. Feng, L. Chen, and Y. Ge, “Constructal design of a cooling channel with semi-circular sidewall ribs in a rectangular heat generation body,” Int. Commun. Heat Mass Transf., vol. 134, p. 106040, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106040.
  • S. Wei, L. Chen, and Z. Xie, “Constructal heat conduction optimization: progresses with entransy dissipation rate minimization,” Therm. Sci. Eng. Prog., vol. 7, pp. 155–163, Sep. 2018. DOI: 10.1016/j.tsep.2018.06.006.
  • M. R. Hajmohammadi, M. Ahmadian, and S. S. Nourazar, “Introducing highly conductive materials into a fin for heat transfer enhancement,” Int. J. Mech. Sci., vol. 150, pp. 420–426, 2019. DOI: 10.1016/j.ijmecsci.2018.10.048.
  • M. R. Hajmohammadi, E. Rasouli, and M. A. Elmi, “Geometric optimization of a highly conductive insert intruding an annular fin,” Int. J. Heat Mass Transf., vol. 146, p. 118910, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118910.
  • G. Lorenzini, C. Biserni, and L. A. O. Rocha, “Constructal design of X-shaped conductive pathways for cooling a heat-generating body,” Int. J. Heat Mass Transf., vol. 58, no. 1–2, pp. 513–520, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.