Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 83, 2023 - Issue 7
79
Views
0
CrossRef citations to date
0
Altmetric
Articles

Frequency response of three-dimensional natural convection of nanofluids under microgravity environments with gravity modulation

ORCID Icon &
Pages 745-769 | Received 16 Aug 2022, Accepted 15 Dec 2022, Published online: 03 Jan 2023

References

  • E. S. Nelson, “An examination of anticipated g-jitter on space station and its effects on material processes,” Tech. Rep. NASA TM-103755, 1994. Available: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950006290.pdf.
  • B. Finley, C. Grodsinsky and R. Delombard, “Summary report of mission acceleration measurements for Spacehab-01, STS-57 Launched 21 June 1993,” NASA STI/Recon Tech. Rep. N, Mar1994.
  • M. J. B. Rogers and R. Delombard, “Summary report of mission acceleration measurements for STS-66. Launched November 3, 1994,” NASA STI/Recon Tech. Rep. N, May1995.
  • K. Kinoshita and T. Yamada, “Pb 1−x SnxTe crystal growth in space,” J. Cryst. Growth, vol. 147, no. 1-2, pp. 91–98, Jan 1995. DOI: 10.1016/0022-0248(94)00660-1.
  • H. Azuma, et al., “Summary of experiment influence of g-jitter on convection and diffusion,” JASMA, vol. 13, no. 3, pp. 180–187, 1996. DOI: 10.15011/jasma.13.3.180. (in Japanese).
  • C. Grodsinsky and M. Whorton, “Survey of active viblation isolation systems for microgravity applications,” J. Spacecr. Rockets, vol. 37, no. 5, pp. 586–596, Sep 2000. DOI: 10.2514/2.3631.
  • R. D. Hampton, G. S. Beech, N. N. S. Rao, L. K. Rupert and Y. K. Kim, “A ‘Kane’s Dynamics’ model for the active rack isolation system. Part One: A linearised model,” IJVSMT, vol. 2, no. 2, pp. 153, 2007. DOI: 10.1504/IJVSMT.2007.013893.
  • S. Maruyama, “Diffusion-convection phenomena under reduced g-jitter,” JASMA, vol. 20, no. 1, pp. 54–60, 2003. DOI: 10.15011/jasma.20.1_54. (in Japanese).
  • Y. Maekawa, S. Matsumoto, K. Kinoshita, H. Kato and S. Yoda, “Velocity-temperature and concentration fluctuations induced by g-jitter under microgravity,” Proc. Joint Xth Eur. VIth Russian Symp. Phys. Sci. Microgr., vol. 2, pp. 309–312, 1997.
  • T. Itami, “Recent status and the future scope of the study of the disusion in melts with high melting point with the use of microgravity environment,” JASMA, vol. 19, no. 3, pp. 185–197, 2002. DOI: 10.15011/jasma.19.3.185. (in Japanese).
  • S. Biringen and L. J. Peltier, “Numerical simulation of 3-D Bénard convection with gravitational modulation,” Phys. Fluids A, vol. 2, no. 5, pp. 754–764, May 1990. DOI: 10.1063/1.857729.
  • T. C. Jue and B. Ramaswamy, “Natural convection with thermocapillary and gravity modulation effects in low-gravity environments,” J. Spacecr. Rockets, vol. 29, no. 6, pp. 856–869, Nov 1992. DOI: 10.2514/3.25542.
  • B. Ramaswamy, “Finite element analysis of two dimensional Rayleigh–Bénard convection with gravity modulation effects,” Int. J. Numer. Methods Heat Fluid Flow, vol. 3, no. 5, pp. 429–444, May 1993. DOI: 10.1108/eb017540.
  • A. Farooq and G. Homsy, “Streaming flows due to g-jitter-induced natural convection,” J. Fluid Mech, vol. 271, pp. 351–378, Jul 1994. DOI: 10.1017/S0022112094001801.
  • P. A. Kondos and R. S. Subramanian, “Buoyant flow in a two-dimensional cavity due to a sinusoidal gravitational field,” Microgr. Sci. Technol., vol. 9, pp. 143–151, 1996.
  • M. Ohnishi, “Analysis of g-jitter measured during space shuttle missions,” JASMA, vol. 16, no. 4, pp. 225–233, 1999. DOI: 10.15011/jasma.16.4.225. (in Japanese).
  • R. Savino and R. Monti, “Convection induced by residual-g and g-jitters in diffusion experiments,” Int. J. Heat Mass Transf., vol. 42, no. 1, pp. 111–126, Jan 1999. DOI: 10.1016/S0017-9310(98)00140-9.
  • N. H. Saeid, “G-jitter induced free convection over a vertical flat plate,” AJSTD, vol. 23, no. 1&2, pp. 133–143, Oct 2017. DOI: 10.29037/ajstd.100.
  • B. S. Bhadauria, I. Hashim and P. G. Siddheshwar, “Effects of internal-heating on weakly non-linear stability analysis of Rayleigh–Bénard convection under g-jitter,” Int. J. Non Linear Mech., vol. 54, pp. 35–42, Sep 2013. DOI: 10.1016/j.ijnonlinmec.2013.03.001.
  • K. V. Paiva, M. B. H. Mantelli and L. K. Slongo, “Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket,” Aerosp. Sci. Technol., vol. 45, pp. 367–375, Sep 2015. DOI: 10.1016/j.ast.2015.06.004.
  • T. T. T. Nguyen, A. Kundan, P. C. Wayner, Jr, J. L. Plawsky, D. F. Chao and R. J. Sicker, “Effects of cooling temperature on heat pipe evaporator performance using an ideal fluid mixture in microgravity,” Exp. Therm. Fluid Sci., vol. 75, pp. 108–117, Jul 2016. DOI: 10.1016/j.expthermflusci.2016.01.016.
  • D. R. Ray, D. K. Das and R. S. Vajjha, “Experimental and numerical investigation of nanofluids performance in a compact minichannel plate heat exchanger,” Int. J. Heat Mass Transf., vol. 71, pp. 732–746, Apr 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.072.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” FEDSM, vol. 231, pp. 99–105, 1995. Available: https://www.osti.gov/biblio/196525.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, Feb 2001. DOI: 10.1063/1.1341218.
  • K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 46, no. 19, pp. 3639–3653, Sep 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • Y. Hwang, et al., “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta, vol. 455, no. 1-2, pp. 70–74, Apr 2007. DOI: 10.1016/j.tca.2006.11.036.
  • E. Abu-Nada, Z. Masoud and A. Hijazi, “Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids,” Int. Commun. Heat Mass Transf., vol. 35, no. 5, pp. 657–665, May 2008. DOI: 10.1016/j.icheatmasstransfer.2007.11.004.
  • H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326–1336, Oct 2008. DOI: 10.1016/j.ijheatfluidflow.2008.04.009.
  • E. Abu-Nada and H. F. Oztop, “Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 669–678, Aug 2009. DOI: 10.1016/j.ijheatfluidflow.2009.02.001.
  • R. Nasrin, M. A. Alim and A. J. Chamkha, “Buoyancy-driven heat transfer of water–Al2O3 nanofluid in a closed chamber: Effects of solid volume fraction, Prandtl number and aspect ratio,” Int. J. Heat Mass Transf., vol. 55, no. 25-26, pp. 7355–7365, Dec 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.08.011.
  • A. Kamyar, K. S. Ong and R. Saidur, “Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon,” Int. J. Heat Mass Transf., vol. 65, pp. 610–618, Oct 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.046.
  • F. Garoosi, F. Hoseininejad and R. M. Rashidi, “Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids,” Energy, vol. 109, pp. 664–678, Aug 2016. DOI: 10.1016/j.energy.2016.05.051.
  • W. M. El-Maghlany, A. A. Hanafy, A. A. Hassan and M. A. El-Magid, “Experimental study of Cu–water nanofluids heat transfer and pressure drop in a horizontal double-tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 78, pp. 100–111, Nov 2016. DOI: 10.1016/j.expthermflusci.2016.05.015.
  • M. A. Almeshaal, C. Maatki, L. Kolsi, K. Ghachem and A. Chamkha, “3D Rayleigh–Bénard-type natural convection in MWCNT-nanofluid-filled L-shaped enclosures with consideration of aggregation effect,” Math. Meth. Appl. Sci., pp. 1–17, Apr 2020. DOI: 10.1002/mma.6409.
  • B. Ghasemi, S. M. Aminossadati and A. Raisi, “Magnetic field effect on natural convection in a nanofluid-filled square enclosure,” Int. J. Therm. Sci., vol. 50, no. 9, pp. 1748–1756, Sep 2011. DOI: 10.1016/j.ijthermalsci.2011.04.010.
  • M. S. Astanina, M. K. Riahi, E. Abu-Nada and M. A. Sheremet, “Magnetohydrodynamic in partially heated square cavity with variable properties: Discrepancy in experimental and theoretical conductivity correlations,” Int. J. Heat Mass Transf., vol. 116, pp. 532–548, Jan 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.050.
  • S. E. Ahmed, M. A. Mansour, A. M. Rashad and T. Salah, “MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3133–3149, Mar 2020. DOI: 10.1007/s10973-019-08675-x.
  • F. R. Hamdan, et al., “G-jitter free convection flow near a three-dimensional stagnation-point region with internal heat generation,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 67, no. 1, pp. 119–135, Mar 2020. Available: https://akademiabaru.com/submit/index.php/arfmts/article/view/2841.
  • M. H. Kamal, A. Ali, L. Y. Jiann, N. A. Rawi and S. Shafie, “Stagnation point flow of a hybrid nanofluid under the gravity modulation effect,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 92, no. 2, pp. 157–170, Apr 2022. DOI: 10.37934/arfmts.92.2.157170.
  • C. Chen, S. Feng, H. Peng, X. Peng, L. Chaoyue, and R. Zhang, “Thermocapillary convection flow and heat transfer characteristics of graphene nanoplatelet based nanofluid under microgravity,” Microgravity Sci. Technol., vol. 33, no. 3, May 2021. DOI: 10.1007/s12217-020-09854-4.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solution,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, Apr 1952. DOI: 10.1063/1.1700493.
  • J. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. Cambridge, UK: Oxford University Press, 1904.
  • A. A. Amsden and F. H. Harlow, “A simplified MAC technique for incompressible fluid flow calculations,” J. Comput. Phys., vol. 6, no. 2, pp. 322–325, Oct 1970. DOI: 10.1016/0021-9991(70)90029-X.
  • F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids, vol. 8, no. 12, pp. 2182–2189, Dec 1965. DOI: 10.1063/1.1761178.
  • C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA: A numerical solution algorithm for transient fluid flows,” Los Alamos Scientific Lab., N. Mex.(USA), Tech. Rep. LA-5852, Jan 1975.
  • N. Takemitsu, “Finite difference method to solve incompressible fluid flow,” J. Comput. Phys., vol. 61, no. 3, pp. 499–518, Dec 1985. DOI: 10.1016/0021-9991(85)90077-4.
  • M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan 1998. DOI: 10.1145/272991.272995.
  • T. Kambe and P. G. Drazin, Fluid Dynamics Stability and Turbulence, University of Tokyo Press, 1998 (in Japanese).
  • R. Kerr, “Rayleigh number scaling in numerical convection,” J. Fluid Mech., vol. 310, pp. 139–179, Mar 1996. DOI: 10.1017/S0022112096001760.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, Aug 2006. DOI: 10.1115/1.2150834.
  • B. H. Chang, A. F. Mills and E. Hernandez, “Natural convection of microparticle suspensions in thin enclosures,” Int. J. Heat Mass Transf., vol. 51, no. 5-6, pp. 1332–1341, Mar 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.030.
  • E. Abu-Nada, “Rayleigh–Bénard convection in nanofluids: Effect of temperature dependent properties,” Int. J. Therm. Sci., vol. 50, no. 9, pp. 1720–1730, Sep 2011. DOI: 10.1016/j.ijthermalsci.2011.04.003.
  • H. T. Rossby, “A study of Bénard convection with and without rotation,” J. Fluid Mech., vol. 36, no. 2, pp. 309–335, Mar 1969. DOI: 10.1017/S0022112069001674.
  • K. G. T. Holland, G. D. Raithby and L. Konicek, “Correlation equations for free convection heat transfer in horizontal layers of air and water,” Int. J. Heat Mass Transf., vol. 18, no. 7-8, pp. 879–884, Aug 1975. DOI: 10.1016/0017-9310(75)90179-9.
  • G. A. Sheikhzadeh, M. Dastmalchi and H. Khorasanizadeh, “Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure,” Int. J. Therm. Sci., vol. 66, pp. 51–62, Apr 2013. DOI: 10.1016/j.ijthermalsci.2012.12.001.
  • M. S. Malashetty and V. Padmavathi, “Effect of gravity modulation on the onset of convection in a fluid and porous layer,” Int. J. Eng. Sci., vol. 35, no. 9, pp. 829–840, Jul 1997. DOI: 10.1016/S0020-7225(97)80002-X.
  • C. J. Ho, W. K. Liu, Y. S. Chang and C. C. Lin, “Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: An experimental study,” Int. J. Therm. Sci., vol. 49, no. 8, pp. 1345–1353, Aug 2010. DOI: 10.1016/j.ijthermalsci.2010.02.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.