Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 8
107
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of MHD mixed convection on a heat-generating element cooling inside a ventilated square cavity filled with Fe3O4–water ferrofluid

ORCID Icon, , , &
Pages 837-852 | Received 02 Sep 2022, Accepted 21 Dec 2022, Published online: 03 Mar 2023

References

  • A. A. Mehrizi, M. Farhadi, H. H. Afroozi, K. Sedighi, and A. A. R. Darz, “Mixed convection heat transfer in a ventilated cavity with hot obstacle: Effect of nanofluid and outlet port location,” Int. Commun. Heat Mass Transf., vol. 39, no. 7, pp. 1000–1008, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.002.
  • K. Kalidasan and P. R. Kanna, “Natural convection on an open square cavity containing diagonally placed heaters and adiabatic square block and filled with hybrid nanofluid of nanodiamond - cobalt oxide/water,” Int. Commun. Heat Mass Transf., vol. 81, pp. 64–71, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.005.
  • E. V. Shulepova, M. A. Sheremet, H. F. Oztop, and N. Abu-Hamdeh, “Mixed convection of Al2O3–H2O nanoliquid in a square chamber with complicated fin,” Int. J. Mech. Sci., vol. 165, pp. 105192, Aug. 2019. DOI: 10.1016/j.ijmecsci.2019.105192.
  • Y. Huang et al., “Numerical study of natural convective heat transfer of nanofluids within a porous corrugated triangular cavity in the presence of a magnetic field,” Numer. Heat Transf. Part A Appl., vol. 82, no. 11, pp. 716–742, 2022. DOI: 10.1080/10407782.2022.2083867.
  • S. Hussain, A. M. Aly, and H. F. Öztop, “Magneto-bioconvection flow of hybrid nanofluid in the presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106029, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106029.
  • K. Mehmood, S. Hussain, and M. Sagheer, “Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: Introduction,” Int. J. Heat Mass Transf., vol. 109, pp. 397–409, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.117.
  • M. Rajarathinam and N. Nithyadevi, “Heat transfer enhancement of Cu-water nanofluid in an inclined porous cavity with internal heat generation,” Therm. Sci. Eng. Prog., vol. 4, pp. 35–44, 2017. DOI: 10.1016/j.tsep.2017.08.003.
  • I. V. Miroshnichenko, M. A. Sheremet, H. F. Oztop, and N. Abu-Hamdeh, “Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element,” Int. J. Heat Mass Transf., vol. 126, pp. 184–191, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.146.
  • D. S. Bondarenko, M. A. Sheremet, H. F. Oztop, and M. E. Ali, “Natural convection of Al2O3/H2O nanofluid in a cavity with a heat-generating element. Heatline visualization,” Int. J. Heat Mass Transf., vol. 130, pp. 564–574, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.091.
  • S. Hussain, N. Alsedias, and A. M. Aly, “Natural convection of a water-based suspension containing nano-encapsulated phase change material in a porous grooved cavity,” J. Energy Storage, vol. 51, pp. 104589, 2022. DOI: 10.1016/j.est.2022.104589.
  • R. P. S. Om Prakash, P. Barman, and P. S. Rao, “MHD free convection in a partially open wavy porous cavity filled with nanofluid,” Numer. Heat Transf. Part A Appl., 2022. DOI: 10.1080/10407782.2022.2132330.
  • S. Hussain, Z. Raizah, and A. M. Aly, “Thermal radiation impact on bioconvection flow of nano-enhanced phase change materials and oxytactic microorganisms inside a vertical wavy porous cavity,” Int. Commun. Heat Mass Transf., vol. 139, pp. 106454, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106454.
  • C.-C. Liao and K. C. Lin, “A two-phase model for studying the complex interplay between natural convection and magnetic field in aluminum-oxide/water nanofluid,” Numer. Heat Transf. Part A Appl., vol. 82, no. 8, pp. 455–468, 2022. DOI: 10.1080/10407782.2022.2079330.
  • M. Keshavarz Moraveji and M. Hejazian, “Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid,” Int. Commun. Heat Mass Transf., vol. 44, pp. 135–146, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.03.011.
  • R. E. Rosensweig, Ferrohydrodynamics. Courier Corporation, 2013.
  • A. Gavili, M. Lajvardi, and J. Sabbaghzadeh, “The effect of magnetic field gradient on ferrofluids heat transfer in a two-dimensional enclosure,” J. Comput. Theor. Nanosci., vol. 7, no. 8, pp. 1425–1435, 2010. DOI: 10.1166/jctn.2010.1499.
  • M. Lajvardi et al., “Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3508–3513, 2010. DOI: 10.1016/j.jmmm.2010.06.054.
  • S. Mojumder, K. M. Rabbi, S. Saha, M. N. Hasan, and S. C. Saha, “Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside,” J. Magn. Magn. Mater., vol. 407, pp. 412–424, 2016. DOI: 10.1016/j.jmmm.2016.01.046.
  • N. C. Jhumur and A. Bhattacharjee, “Unsteady MHD mixed convection inside L-shaped enclosure in the presence of ferrofluid (Fe3O4),” Proc. Eng., vol. 194, pp. 494–501, 2017. DOI: 10.1016/j.proeng.2017.08.176.
  • S. E. Ahmed, M. A. Mansour, A. M. Alwatban, and A. M. Aly, “Finite element simulation for MHD ferro-convective flow in an inclined double-lid driven L-shaped enclosure with heated corners,” Alex. Eng. J., vol. 59, no. 1, pp. 217–226, 2020. DOI: 10.1016/j.aej.2019.12.026.
  • S. M. Mousavi et al., “Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3331–3343, 2020. DOI: 10.1007/s10973-019-08650-6.
  • M. Sheikholeslami and D. D. Ganji, “Ferrofluid convective heat transfer under the influence of external magnetic source,” Alex. Eng. J., vol. 57, no. 1, pp. 49–60, 2018. DOI: 10.1016/j.aej.2016.11.007.
  • I. E. Sarris, G. K. Zikos, A. P. Grecos, and N. S. Vlachos, “On the limits of validity of the low magnetic Reynolds number approximation in MHD natural- convection heat transfer,” Numer. Heat Transf. Part B Fundam., vol. 50, no. 2, pp. 157–180, 2006. DOI: 10.1080/10407790500459403.
  • F. P. Incropera, “Convection heat transfer in electronic equipment cooling,” J. Heat Transfer, vol. 110, no. 4b, pp. 1097–1111, Nov. 1988. DOI: 10.1115/1.3250613.
  • M. Sheikholeslami and K. Vajravelu, “Nanofluid flow and heat transfer in a cavity with variable magnetic field,” Appl. Math. Comput., vol. 298, pp. 272–282, 2017. DOI: 10.1016/j.amc.2016.11.025.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop, and O. K. Nusier, “Convective heat transfer of ferrofluid in a lid-driven cavity with a heat-conducting solid backward step under the effect of a variable magnetic field,” Numer. Heat Transf. Part A Appl., vol. 72, no. 1, pp. 54–67, 2017. DOI: 10.1080/10407782.2017.1353377.
  • S. V. Patankar, Numerical Heat Transfer Fluid Flow. 1980, p. 214. Boca Raton: CRC Press. DOI: 10.13182/nse81-a20112.
  • B. P. Leonard, “A stable and accurate convective modelling procedure based on quadratic upstream interpolation,” Comput. Methods Appl. Mech. Eng., vol. 19, no. 1, pp. 59–98, Jun. 1979. DOI: 10.1016/0045-7825(79)90034-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.