Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 8
201
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO + Ag/kerosene oil) over a stretching sheet

&
Pages 853-876 | Received 12 Sep 2022, Accepted 20 Dec 2022, Published online: 11 Apr 2023

References

  • M. M. Cross, “Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems,” J. Colloid Sci., vol. 20, no. 5, pp. 417–437, 1965.
  • M. Khan and M. Manzur, “Boundary layer flow and heat transfer of Cross fluid over a stretching sheet,” arXiv Preprint arXiv, vol. 1609, pp. 01855, 2016.
  • T. Hayat, I. Ullah, M. Waqas, and A. Alsaedi, “Flow of chemically reactive magneto Cross nano liquid with temperature-dependent conductivity,” Appl. Nanosci., vol. 8, no. 6, pp. 1453–1460, 2018.
  • M. Manzur, M. Khan, and M. U. Rahman, “Mixed convection heat transfer to cross fluid with thermal radiation: Effects of buoyancy assisting and opposing flows,” Int. J. Mech. Sci., vol. 138, pp. 515–523, 2018.
  • M. Azam, T. Xu, A. Shakoor, and M. Khan, “Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-Cross nanofluid, Int,” Commun. Heat Mass Transf., vol. 113, pp. 104547, 2020.
  • T. Hayat, M. I. Khan, M. Tamoor, M. Waqas, and A. Alsaedi, “Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface,” Res. Phys., vol. 7, pp. 1824–1827, 2017.
  • M. Ali, M. Shahzad, F. Sultan, W. A. Khan, and S. Rashid, “Exploring the features of stratification phenomena for 3D flow of Cross nanofluid considering activation energy,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104674, 2020.
  • M. I. Khan, T. Hayat, M. I. Khan, and A. Alsaedi, “Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid,” Int. Commun. Heat Mass Transf., vol. 91, pp. 216–224, 2018.
  • M. Azam, A. Shakoor, H. F. Rasool, and M. Khan, “Numerical simulation for solar energy aspects on unsteady convective flow of MHD Cross nanofluid: A revised approach,” Int. J. Heat Mass Transf., vol. 131, pp. 495–505, 2019.
  • F. Ahmad et al., “The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet,” Case Stud. Therm. Eng., vol. 27, pp. 101257, 2021.
  • A. Hamid et al., “Impact of Hall current and homogenous, heterogeneous reactions on MHD flow of GO − MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface,” Waves Random Complex Media, pp. 1–18, 2021.
  • T. Hayat, S. Nadeem, and A. U. Khan, “Rotating flow of Ag − CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects,” Eur. Phys. J. E, vol. 41, no. 6, pp. 1–9, 2018.
  • S. Masood and M. Farooq, “Influence of thermal stratification and thermal radiation on graphene oxide-Ag/H2O hybrid nanofluid,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1361–1370, 2021.
  • W. Alghamdi et al., “Boundary layer stagnation point flow of the Casson hybrid nanofluid over an unsteady stretching surface,” AIP Adv., vol. 11, no. 1, pp. 015016, 2021.
  • M. Ramzan et al., “Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions,” Plos One, vol. 16, no. 12, pp. e0260854, 2021.
  • I. A. Shah, S. Bilal, M. I. Asjad, and E. M. Tag-ElDin, “Convective heat and mass transport in casson fluid flow in curved corrugated cavity with inclined magnetic field,” Micromachines, vol. 13, no. 10, pp. 1624, 2022.
  • I. A. Shah et al., “On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nanotubes dispersion by executing nano-layer approach,” Alex. Eng. J., vol. 61, no. 12, pp. 11737–11751, 2022.
  • K. Thriveni and B. Mahanthesh, “Optimization, and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation,” Eur. Phys. J. Plus, vol. 135, no. 6, pp. 1–22, 2020.
  • S. Shaw, S. S. Samantaray, A. Misra, M. K. Nayak, and O. D. Makinde, “Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105816, 2022.
  • W. Al-Kouz, B. Mahanthesh, M. S. Alqarni, and K. Thriveni, “A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat sources modulations,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105364, 2021.
  • B. Mahanthesh, J. Mackolil, M. Radhika, and W. Al-Kouz, “Significance of quadratic thermal radiation and quadratic convection on boundary layer two-phase flow of a dusty nanoliquid past a vertical plate,” Int. Commun. Heat Mass Transf., vol. 120, pp. 105029, 2021.
  • K. Thriveni and B. Mahanthesh, “Significance of variable fluid properties on hybrid nanoliquid flow in a micro-annulus with quadratic convection and quadratic thermal radiation: Response surface methodology,” Int. Commun. Heat Mass Transf., vol. 124, pp. 105264, 2021.
  • I. A. Shah, S. Bilal, A. Akgul, M. Omri, J. Bouslimi, and N. Z. Khan, “Significance of cold cylinder in heat control in power law fluid enclosed in isosceles triangular cavity generated by natural convection: A computational approach,” Alex. Eng. J., vol. 61, no. 9, pp. 7277–7290, 2022.
  • P. Forchheimer, “Wasserbewegung durch boden,” Z. Ver. Deutsch Ing., vol. 45, pp. 1782–1788, 1901.
  • T. Hayat, M. I. Khan, T. A. Khan, M. I. Khan, and A. Alsaedi, “Entropy generation in Darcy–Forchheimer bidirectional flow of water-based carbon nanotubes with convective boundary conditions,” J. Mol. Liq., vol. 265, no. 1, pp. 629–638, 2018.
  • G. Rasool, T. Zhang, A. J. Chamkha, A. Shafiq, I. Tlili and G. Shahzadi, “Entropy generation and consequences of binary chemical reaction on MHD Darcy Forchheimer Williamson nanofluid flow over non-linearly stretching surface,” Entropy, vol. 22, no. 1, pp. 18, 2020.
  • M. Bilal, M. Ramzan, Y. Mehmood, M. K. Alaoui, and R. Chinram, “An entropy optimization study of non-Darcian magnetohydrodynamic Williamson nanofluid with nonlinear thermal radiation over a stratified sheet,” Proc. Institution Mech. Eng. Part E: J. Process Mech. Eng., vol. 235, no. 6, pp. 1883–1894, 2021.
  • A. Saeed et al., “Darcy-Forchheimer hybrid nanofluid flow over a stretching curved surface with heat and mass transfer,” PLoS One, vol. 16, no. 5, pp. e0249434, 2021.
  • N. Z. Khan et al., “Mixed convective thermal transport in a lid-driven square enclosure with square obstacle,” Alex. Eng. J., 2022. DOI: 10.1016/j.aej.2022.08.031.
  • S. Bilal et al., “A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface,” Alex. Eng. J., vol. 61, no. 12, pp. 11889–11898, 2022.
  • Z. A. Qureshi et al., “Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs,” Alex. Eng. J., vol. 61, no. 12, pp. 12925–12941, 2022.
  • H. Konwar, Bendangwapang, and T. Jamir. “Mixed convection MHD boundary layer flow, heat, and mass transfer past an exponential stretching sheet in porous medium with temperature-dependent fluid properties,” Numer. Heat Transf. A: Appl., pp. 1–19, 2022. DOI: 10.1080/10407782.2022.2104581.
  • C. Navier, “Memoire sur les Lois du Mouvement des fluides,” Mem. Acad. Sci. Inst. de France, vol. 6, no. 2, pp. 389–440, 1827.
  • I. J. Rao and K. R. Rajagopai, “The effect of the slip boundary condition on the flow of fluids in a channel,” Acta Mech., vol. 135, pp. 113–126, 1999.
  • R. Ellahi et al., “Study of two-phase Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip,” Inventions, vol. 5, pp. 6, 2020.
  • V. Puttaswmay, G. B. Jayanna, and S. D. Onkarappa, “Heat transfer and irreversibility rate in MHD flow of a hybrid nanofluid with Newton boundary condition, slip flow, and nonlinear thermal radiation,” Heat Transf., vol. 50, no. 4, pp. 3342–3365, 2021.
  • A. Rehman and Z. Salleh, “Approximate analytical analysis of unsteady MHD mixed flow of non-Newtonian hybrid nanofluid over a stretching surface,” Fluids, vol. 6, no. 4, pp. 138, 2021.
  • U. S. Mahabaleshwar, K. N. Sneha, and H. N. Huang, “An effect of MHD and radiation on CNTS-Water based nanofluids due to a stretching sheet in a Newtonian fluid,” Case Stud. Therm. Eng., vol. 28, pp. 101462, 2021.
  • W. F. Xia et al., “Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions,” Case Stud. Therm. Eng., vol. 32, pp. 101893, 2022.
  • A. M. Obalalu et al., “Computational study of magneto-convective non- Newtonian nanofluid slip flow over a stretching/shrinking sheet embedded in a porous medium,” Comput. Math. Appl., vol. 119, pp. 319–326, 2022.
  • S. Chandel and S. Sood, “Numerical analysis of Williamson-micropolar nanofluid flow through porous rotatory surface with slip boundary conditions,” Int. J. Appl. Comput. Math., vol. 8, no. 3, pp. 1–22, 2022.
  • D. S. Chauhan, R. Agrawal, and P. Rastogi, “Magnetohydrodynamic slip flow and heat transfer in a porous medium over a stretching cylinder: Homotopy analysis method,” Numer. Heat Transf. A: Appl., vol. 62, no. 2, pp. 136–157, 2012.
  • K. K. Al-Chlaihawi, H. H. Alaydamee, A. E. Faisal, K. Al-Farhany, and M. A. Alomari, “Newtonian and non-Newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: A review,” Heat Transf., vol. 51, no. 2, pp. 1725–1745, 2022.
  • G. Mandal and D. Pal, “Entropy generation analysis of radiated magnetohydrodynamic flow of carbon nanotubes nanofluids with variable conductivity and diffusivity subjected to chemical reaction,” J. Nanofluids, vol. 10, no. 4, pp. 491–505, 2021.
  • B. K. Siddiqui, S. Batool, Q. M. U. Hassan, and M. Y. Malik, “Repercussions of homogeneous and heterogeneous reactions of 3D flow of Cu-water and Al2O3-water nanofluid and entropy generation estimation along stretching cylinder,” Ain Shams Eng. J., vol. 13, no. 1, pp. 101493, 2022.
  • T. Tayebi and A. J. Chamkha, “Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2165–2179, 2020.
  • M. I. Khan, S. Ullah, T. Hayat, M. I. Khan, and A. Alsaedi, “Entropy generation minimization (EGM) for convection nanomaterial flow with nonlinear radiative heat flux,” J. Mol. Liq., vol. 260, pp. 279–291, 2018.
  • J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi, and M. E.-S. Ali, “Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface,” Entropy, vol. 18, no. 4, pp. 123, 2016.
  • R. Fares, F. Mebarek-Oudina, A. Aissa, S. M. Bilal, and H. F. Oztop, “Optimal entropy generation in Darcy-Forchheimer magnetized flow in a square enclosure filled with silver-based water nanoliquid,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1571–1581, 2022.
  • M. Khan, “On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet,” Res. Phys., vol. 7, pp. 310–319, 2017.
  • B. Hiba et al., “A novel case study of thermal and streamline analysis in a grooved enclosure filled with (Ag-MgO/Water) hybrid nanofluid: Galerkin FEM,” Case Stud. Therm. Eng., vol. 28, pp. 101372, 2021.
  • A. Ayub et al., “Spectral relaxation approach and velocity slip stagnation point flow of inclined magnetized cross-nanofluid with a quadratic multiple regression model,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2049923.
  • S. Rosseland, Astrophysik und Atom-Theoretische Grundlagen. Berlin: Springer Verlag, 1931, pp. 41–44.
  • A. Tassaddiq et al., “Heat and mass transfer together with hybrid nanofluid flow over a rotating disk,” AIP Adv., vol. 10, no. 5, pp. 055317, 2020.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, pp. 2477–2483, 2010.
  • S. T. M. Din et al., “Investigation of heat and mass transfer under the influence of variable diffusion coefficient and thermal conductivity,” Indian J. Phys., vol. 92, no. 9, pp. 1109–1117, 2018.
  • K. Ali et al., “Quasi-linearization analysis for heat and mass transfer of magnetically driven 3rd-grade (Cu − TiO2/engine oil) nanofluid via a convectively heated surface,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106060, 2022.
  • C. Y. Wang, “Free convection on a vertical stretching surface,” J. Appl. Math. Mech. (ZAMM), vol. 69, pp. 418–420, 1989.
  • M. A. A. Hamad and M. Ferdows, “Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: A lie group analysis,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, pp. 132–140, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.