Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 8
112
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Numerical treatment of thermal and concentration convection along with induced magnetic field on peristaltic pumping of a magnetic six-constant Jeffrey nanofluid through a vertical divergent channel

, ORCID Icon & ORCID Icon
Pages 877-904 | Received 18 Oct 2022, Accepted 30 Dec 2022, Published online: 13 Mar 2023

References

  • T. W. Latham, “Fluid motion in peristaltic pump,” M.S. thesis, MIT, Cambridge, MA, 1966.
  • T. Hayat, N. Ali, and S. Asgher, “Hall effects on peristaltic flow of a Maxwell fluid in a porous medium,” Phys. Lett. A, vol. 363, no. 56, pp. 397–403, 2007. DOI: 10.1016/j.physleta.2006.10.104.
  • T. Hayat and N. Ali, “A mathematical description of peristaltic hydromagnetic flow in a tube,” Appl. Math. Comput., vol. 188, no. 2, pp. 1491–1502, 2007. DOI: 10.1016/j.amc.2006.11.035.
  • Y. Wang, T. Hayat, and K. Huttler, “Peristaltic flow of a Johnson Segalman fluid through a deformable tube,” Theor. Comput. Fluid Dyn., vol. 21, no. 5, pp. 369–380, 2007. DOI: 10.1007/s00162-007-0054-1.
  • N. Ali, T. Hayat, and M. Sajid, “Peristaltic flow of a couple stress fluid in an asymmetric channel,” Biorheology, vol. 44, pp. 125–138, 2007.
  • S. Srinivas and M. Kothandapni, “Peristaltic transport in an asymmetric channel with heat transfer – A note,” Int. Commu. Heat Mass Trans., vol. 35, no. 4, pp. 514–522, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.08.011.
  • D. Tripathi, S. K. Pandey, and S. Das, “Peristaltic flowof viscoelastic fluid with fractional Maxwell model through a channel,” Appl. Math. Comput., vol. 215, no. 10, pp. 3645–3654, 2010. DOI: 10.1016/j.amc.2009.11.002.
  • F. M. Abbasi, T. Hayat, F. Alsaadi, A. M. Dobai, and H. Gao, “MHD peristaltic transport of spherical and cylindrical magneto- nanoparticles suspended in water,” AIP Adv., vol. 5, no. 7, pp. 077104, 2015. DOI: 10.1063/1.4926368.
  • S. Nadeem and N. S. Akbar, “Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube,” Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 12, pp. 3950–3964, 2010. DOI: 10.1016/j.cnsns.2010.01.019.
  • S. Nadeem and N. S. Akbar, “Influence of heat and mass transfer on a peristaltic motion of a Jeffrey-six constant fluid in an annulus,” Heat Mass Transfer, vol. 46, no. 5, pp. 485–493, 2010. DOI: 10.1007/s00231-010-0585-7.
  • S. Nadeem and N. S. Akbar, “Numerical solutions of peristaltic flow of a jeffrey-six constant fluid with variable magnetohydrodynamic,” Z. Naturforsch. A, vol. 65, no. 1, pp. 911–8, 2010.
  • N. S. Akbar and S. Nadeem, “Simulation of heat transfer on the peristaltic flow of a Jeffrey-six constant fluid in a diverging tube,” Int. Commun. Heat Mass Transf., vol. 38, no. 2, pp. 154–159, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.002.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Fluids Eng. Div., vol. 231, pp. 99–105, 1995.
  • N. Asokan, P. Gunnasegaran, and V. V. Wanatasanappan, “Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles,” Therm. Sci. Eng. Prog., vol. 20, pp. 100727, 2020. DOI: 10.1016/j.tsep.2020.100727.
  • Y. Jiang, X. Zhou, and Y. Wang, “Effect of nanoparticle shapes on nanofluid mixed forced and thermocapillary convection in minichannel,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104884, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104884.
  • H. Saadati, K. Hadad, and A. Rabiee, “Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid,” Nucl. Eng. Technol., vol. 50, no. 5, pp. 639e647–647, 2018. DOI: 10.1016/j.net.2018.01.015.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • I. Tlili and T. A. Alkanhal, “Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment,” J. Water Reuse Desalin., vol. 9, no. 3, pp. 232–248, 2019. DOI: 10.2166/wrd.2019.057.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Dissipated-radiative compressible flow of nanofluids over unsmoothed inclined surfaces with variable properties,” Numer. Heat Transf. A: Appl., 2022. DOI: 10.1080/10407782.2022.2141389.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “MHD Ellis nanofluids flow around rotating cone in the presence of motile oxytactic microorganisms,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106056, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106056.
  • S. E. Ahmed, A. A. Arafa, S. A. Hussein, and Z. A. S. Raizah, “Novel treatments for the bioconvective radiative Ellis nanofluids wedge flow with viscous dissipation and an activation energy,” Case Stud. Therm. Eng., vol. 40, pp. 102510, 2022. DOI: 10.1016/j.csite.2022.102510.
  • A. M. Alqahtani et al., “The atomic obstacle size influence on the hydrogen flow inside a nanochannel: A molecular dynamics approach to predict the fluid atomic arrangements,” Eng. Anal. Bound. Elem., vol. 143, pp. 547–558, 2022. DOI: 10.1016/j.enganabound.2022.06.027.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Arrhenius activated energy impacts on irreversibility optimization due to unsteady stagnation point flow of radiative Casson nanofluids,” Eur. Phys. J. Plus, vol. 137, no. 11, pp. 1–14, 2022. DOI: 10.1140/epjp/s13360-022-03434-8.
  • S. Li, S. M. Sajadi, K. A. M. Alharbi, M. El-Shorbagy, and I. Tlili, “The molecular dynamics study of vacancy defect influence on carbon nanotube performance as drug delivery system,” Eng. Anal. Bound. Elem., vol. 143, pp. 109–123, 2022. DOI: 10.1016/j.enganabound.2022.06.006.
  • E. M. Barhoumi, P. C. Okonkwo, I. Ben Belgacem, M. Zghaibeh, and I. Tlili, “Optimal sizing of photovoltaic systems based green hydrogen refueling stations case study Oman,” Int. J. Hydrogen Energy, vol. 47, no. 75, pp. 31964–31973, 2022. DOI: 10.1016/j.ijhydene.2022.07.140.
  • H. A. Hejazi et al., “Inclined surface slip flow of nanoparticles with subject to mixed convection phenomenon: Fractional calculus applications,” J. Indian Chem. Soc., vol. 99, no. 7, pp. 100564, 2022. DOI: 10.1016/j.jics.2022.100564.
  • M. K. Nayak et al., “Entropy optimized assisting and opposing non-linear radiative flow of hybrid nanofluid,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2032474.
  • I. Tlili, D. Baleanu, S. Mohammad Sajadi, F. Ghaemi, and M. A. Fagiry, “Numerical and experimental analysis of temperature distribution and melt flow in fiber laser welding of inconel 625,” Int. J. Adv. Manuf. Technol., vol. 121, no. 12, pp. 765–784, 2022. DOI: 10.1007/s00170-022-09329-3.
  • A. A. M. Arafa, Z. Z. Rashed, and S. E. Ahmed, “Radiative flow of non-Newtonian nanofluids within inclined porous enclosures with time fractional derivative,” Sci. Rep., vol. 11, no. 1, pp. 5338, 2021. DOI: 10.1038/s41598-021-84848-9.
  • R. T. Mahmood et al., “Bioremediation of textile industrial effluents by fomitopsis pinicola iebl-4 for environmental sustainability,” Hum. Ecol. Risk Assess.: Int. J., 2022. DOI: 10.1080/10807039.2022.2057277.
  • A. A. M. Arafa, Z. Z. Rashed, and S. E. Ahmed, “Radiative MHD bioconvective nanofluid flow due to gyrotactic microorganisms using Atangana-Baleanu Caputo fractional derivative,” Phys. Scr., vol. 96, no. 5, pp. 055211, 2021. DOI: 10.1088/1402-4896/abe82d.
  • K. M. Ramadan, O. Qisieh, and I. Tlili, “Thermal creep effects on fluid flow and heat transfer in a microchannel gas cooling,” Proc. IMechE C: J. Mech. Eng. Sci., vol. 236, no. 9, pp. 5033–5047, 2022. DOI: 10.1177/0954406221105703.
  • B. Ahmed and T. Javed, “A study of full Navier–Stokes equations of peristaltic flow in a poroussaturated tube under the inducement of magnetic field: Finite element analysis,” Chaos Soliton. Fract., vol. 125, pp. 79–87, 2019. DOI: 10.1016/j.chaos.2019.05.012.
  • S. Nadeem and S. Akram, “Influence of inclined magnetic field on peristaltic flow of a williamson fluid model in an inclined symmetric or asymmetric channel,” Math. Comput. Modell., vol. 52, no. 12, pp. 107–119, 2010. DOI: 10.1016/j.mcm.2010.02.001.
  • N. S. Akbar, “Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement,” J. Magn. Magn. Mater., vol. 378, pp. 463–468, 2015.
  • R. Ellahi, M. M. Bhatti, and C. Khalique, “Three-dimensional flow analysis of carreau fluid model induced by peristaltic wave in the presence of magnetic field,” J. Mol. Liq., vol. 241, pp. 1059–1068, 2017. DOI: 10.1016/j.molliq.2017.06.082.
  • B. Mallick and J. Misra, “Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field,” Eng. Sci. Technol. Int. J., vol. 22, no. 1, pp. 266–281, 2019. DOI: 10.1016/j.jestch.2018.12.001.
  • A. Tanveer, T. Hayat, F. Alsaadi, and A. Alsaedi, “Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls,” Comput. Biol. Med., vol. 82, pp. 71–79, 2017. DOI: 10.1016/j.compbiomed.2017.01.015.
  • D. Bhandari, D. Tripathi, and O. A. Bég, “Electro-osmosis modulated periodic membrane pumping flow and particle motion with magnetic field effects,” Phys. Fluids, vol. 34, no. 9, pp. 092014, 2022. DOI: 10.1063/5.0111050.
  • D. Bhandari, D. Tripathi, and V. Narla, “Magnetohydrodynamics-based pumping flow model with propagative rhythmic membrane contraction,” Eur. Phys. J. Plus, vol. 135, no. 11, pp. 1–19, 2020. DOI: 10.1140/epjp/s13360-020-00889-5.
  • D. S. Bhandari, D. Tripathi, and V. K. Narla, “Transient membrane kinematic model for viscoplastic fluids: Periodic contraction in the microchannel,” Eur. Phys. J. Spec. Top., 2022. DOI: 10.1140/epjs/s11734-022-00655-x.
  • D. Bhandari, D. Tripathi, and V. Narla, “Pumping flow model for couple stress fluids with a propagative membrane contraction,” Int. J. Mech. Sci., vol. 188, pp. 105949, 2020. DOI: 10.1016/j.ijmecsci.2020.105949.
  • J. O. Hirschfelder, C. F. Curtiss, and R. Byron Bird, Molecular Theory of Gases and Liquids. New York, NY: Wiley, 1954.
  • W. A. Khan and A. Aziz, “Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solute and nanoparticle fluxes,” Int. J. Therm. Sci., vol. 50, no. 11, pp. 2154–2160, 2011. DOI: 10.1016/j.ijthermalsci.2011.05.022.
  • F. G. Awad, P. Sibanda, and A. A. Khidir, “Thermo diffusion effects on magneto-nanofluid flow over a stretching sheet,” Bound. Value Prob., vol. 136, pp. 1–13, 2013.
  • O. A. Bég and D. Tripathi, “Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: A bio-nanoengineering model,” Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst., vol. 225, no. 3, pp. 99–114, 2011. DOI: 10.1177/1740349912437087.
  • H. Alolaiyan et al., “Effects of double diffusion convection on Third grade nanofluid through a curved compliant peristaltic channel,” Coatings, vol. 10, no. 2, pp. 154, 2020. DOI: 10.3390/coatings10020154.
  • S. Akram and Q. Afzal, “Effects of thermal and concentration convection and induced magnetic field on peristaltic flow of Williamson nanofluid in inclined uniform channel,” Eur. Phys. J. Plus, vol. 135, no. 10, pp. 857, 2020. DOI: 10.1140/epjp/s13360-020-00869-9.
  • N. Saleem, S. Munawar, and D. Tripathi, “Thermal analysis of double diffusive electrokinetic thermally radiated TiO2-Ag/blood stream triggered by synthetic cilia under buoyancy forces and activation energy,” Phys. Scr., vol. 96, no. 9, pp. 095218, 2021. DOI: 10.1088/1402-4896/ac0988.
  • N. Saleem and S. Munawar, “Significance of synthetic cilia and Arrhenius energy on double diffusive stream of radiated hybrid nanofluid in microfluidic pump under Ohmic heating: An entropic analysis,” Coatings, vol. 11, no. 11, pp. 1292, 2021. DOI: 10.3390/coatings11111292.
  • S. Akram, Q. Afzal, and E. H. Aly, “Half-breed effects of thermal and concentration convection of peristaltic pseudoplastic nanofluid in a tapered channel with induced magnetic field.” Case Stud. Therm. Eng., vol. 22, pp. 100775, 2020.
  • Y. Sato, M. Hashimoto, S. Cai, and N. Hashimoto, “Electromagnetic miniature pump using peristaltic motion of interchangeable flexible tube” presented at the 6th JFPS Int. Symp. Fluid Power, Tsukuba, Japan, Nov. 7–10, 2005.
  • S. N. Aristov and O. I. Skul’skii, “Exact solution of the problem on a six-constant Jeffreys model of fluid in a plane channel,” J. Appl. Mech. Tech. Phys., vol. 43, no. 6, pp. 817–822, 2002. DOI: 10.1023/A:1020752101539.
  • S. A. Hussein, S. E. Ahmed, and A. A. Arafa, “Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties,” ZAMM‐J. Appl. Math. Mech./Z. Angew. Math. Mech., vol. 103, no. 1, pp. e202200284, 2022. DOI: 10.1002/zamm.202200284.
  • H. Vaidya et al., “Combined effects of chemical reaction and variable thermal conductivity on MHD peristaltic flow of phan-thien-tanner liquid through inclined channel,” Case Stud. Therm. Eng., vol. 36, pp. 102214, 2022. DOI: 10.1016/j.csite.2022.102214.
  • A. A. M. Arafa, S. E. Ahmed, and M. M. Allan, “Peristaltic flow of non-homogeneous nanofluids through variable porosity and heat generating porous media with viscous dissipation: Entropy analyses,” Case Stud. Therm. Eng., vol. 32, pp. 101882, 2022. DOI: 10.1016/j.csite.2022.101882.
  • M. Kothandapani and V. Pushparaj, “Consequence of induced magnetic field on peristaltic motion of a carreau nanofluid in a tapered asymmetric channel,” HFF, vol. 27, no. 9, pp. 1986–2014, 2017. DOI: 10.1108/HFF-03-2016-0084.
  • A. H. Shapiro, M. Y. Jafferin, and S. L. Weinberg, “Peristaltic pumping with long wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, no. 4, pp. 799–825, 1969. DOI: 10.1017/S0022112069000899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.