Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 8
213
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Energy buffer mechanism for heat transfer enhancement in grooved channel cooling with flow intermittency

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 905-920 | Received 02 Nov 2022, Accepted 02 Jan 2023, Published online: 02 Mar 2023

References

  • H. Y. Kim, B. H. Kang and J. M. Hyun, “Heat transfer in the thermally developing region of a pulsating channel flow,” Int. J. Heat Mass Transf., vol. 36, no. 17, pp. 4257–4266, Nov. 1993. DOI: 10.1016/0017-9310(93)90088-n.
  • B. Mehta and S. Khandekar, “Local experimental heat transfer of single-phase pulsating laminar flow in a square mini-channel,” Int. J. Therm. Sci., vol. 91, pp. 157–166, May 2015. DOI: 10.1016/j.ijthermalsci.2015.01.008.
  • H. W. Cho and J. M. Hyun, “Numerical solutions of pulsating flow and heat transfer characteristics in a pipe,” Int. J. Heat Fluid Flow, vol. 11, no. 4, pp. 321–330, Dec. 1990. DOI: 10.1016/0142-727X(90)90056-H.
  • D. A. Nield and A. V. Kuznetsov, “Forced convection with laminar pulsating flow in a channel or tube,” Int. J. Therm. Sci., vol. 46, no. 6, pp. 551–560, Jun. 2007. DOI: 10.1016/j.ijthermalsci.2006.07.011.
  • H. N. Hemida, M. N. Sabry, A. Abdel-Rahim and H. Mansour, “Theoretical analysis of heat transfer in laminar pulsating flow,” Int. J. Heat Mass Transf., vol. 45, no. 8, pp. 1767–1780, Apr. 2002. DOI: 10.1016/S0017-9310(01)00274-5.
  • M. Faghri, K. Javdani and A. Faghri, “Heat transfer with laminar pulsating flow in a pipe,” Lett. Heat Mass Transf., vol. 6, no. 4, pp. 259–270, Jul.–Aug. 1979. DOI: 10.1016/0094-4548(79)90013-4.
  • Z. Jun, Z. Danling, W. Ping and G. Hong, “An experimental study of heat transfer enhancement with a pulsating flow,” Heat Trans. Asian Res., vol. 33, no. 5, pp. 279–286, Jun. 2004. DOI: 10.1002/htj.20020.
  • R. Siegel and M. Perlmutter, “Heat Transfer for Pulsating Laminar Duct Flow,” J. Heat Transf., vol. 84, no. 2, pp. 111–122, May 1962. DOI: 10.1115/1.3684307.
  • N. Kurtulmuş and B. Sahin, “A review of hydrodynamics and heat transfer through corrugated channels,” Int. Commun. Heat Mass Transf., vol. 108, pp. 104307, Nov. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104307.
  • G. L. Wang, N. Qian and G. F. Ding, “Heat transfer enhancement in microchannel heat sink with bidirectional rib,” Int. J. Heat Mass Transf., vol. 136, pp. 597–609, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.018.
  • L. Chai, G. D. Xia and H. S. Wang, “Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 3: Performance evaluation,” Int. J. Heat Mass Transf., vol. 97, pp. 1091–1101, Jun. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.075.
  • L. Chai, G. D. Xia and H. S. Wang, “Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls - Part 2: Pressure drop,” Int. J. Heat Mass Transf., vol. 97, pp. 1081–1090, Jun. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.076.
  • Q. F. Zhu, et al., “Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes,” Int. J. Therm. Sci., vol. 161, pp. 106721, Mar. 2021. DOI: 10.1016/j.ijthermalsci.2020.106721.
  • G. D. Xia, L. Chai, H. Y. Wang, M. Z. Zhou and Z. Z. Cui, “Optimum thermal design of microchannel heat sink with triangular reentrant cavities,” Appl. Therm. Eng., vol. 31, no. 6-7, pp. 1208–1219, May 2011. DOI: 10.1016/j.applthermaleng.2010.12.022.
  • H. E. Ahmed and M. I. Ahmed, “Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks,” Int. Commun. Heat Mass Transf., vol. 66, pp. 47–57, Aug. 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.009.
  • G. D. Xia, D. D. Ma, Y. L. Zhai, Y. F. Li, R. Liu and M. Du, “Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure,” Energy Convers. Manag., vol. 105, pp. 848–857, Nov. 2015. DOI: 10.1016/j.enconman.2015.08.042.
  • N. Kurtulmuş, H. Zontul and B. Sahin, “Heat transfer and flow characteristics in a sinusoidally curved converging-diverging channel,” Int. J. Therm. Sci., vol. 148, pp. 106163, Feb. 2020. DOI: 10.1016/j.ijthermalsci.2019.106163.
  • Q. Zhu, et al., “Heat transfer enhancement for microchannel heat sink by strengthening fluids mixing with backward right-angled trapezoidal grooves in channel sidewalls,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106106, Jun. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106106.
  • J. P. Abraham, E. M. Sparrow and R. D. Lovik, “Unsteady, three-dimensional fluid mechanic analysis of blood flow in plaque-narrowed and plaque-freed arteries,” Int. J. Heat Mass Transf., vol. 51, no. 23-24, pp. 5633–5641, Nov. 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.04.038.
  • C. S. Wang, T. C. Wei, P. Y. Shen and T. M. Liou, “Lattice Boltzmann study of flow pulsation on heat transfer augmentation in a louvered microchannel heat sink,” Int. J. Heat Mass Transf., vol. 148, pp. 119139, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119139.
  • S. W. Chang and T. H. Cheng, “Thermal performance of channel flow with detached and attached pin-fins of hybrid shapes under inlet flow pulsation,” Int. J. Heat Mass Transf., vol. 164, pp. 120554, Jan. 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120554.
  • D. X. Jin, Y. P. Lee and D. Y. Lee, “Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel,” Int. J. Heat Mass Transf., vol. 50, no. 15-16, pp. 3062–3071, Jul. 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.12.001.
  • H. Zontul and B. Şahin, “Experimental investigation of convective heat transfer performance and hydrodynamics of pulsating flow through the rectangular grooved channel,” Exp. Therm. Fluid Sci., vol. 141, pp. 110796, Feb. 2023. DOI: 10.1016/j.expthermflusci.2022.110796.
  • H. Hamzah and B. Sahin, “Analysis of SWCNT-water nanofluid flow in wavy channel under turbulent pulsating conditions: Investigation of homogeneous and discrete phase models,” Int. J. Therm. Sci., vol. 184, pp. 108011, Feb. 2023. DOI: 10.1016/j.ijthermalsci.2022.108011.
  • M. Jafari, M. Farhadi and K. Sedighi, “Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach,” Int. Commun. Heat Mass Transf., vol. 45, pp. 146–154, Jul. 2013. DOI: 10.1016/j.icheatmasstransfer.2013.04.006.
  • S. Akcay, “Numerical analysis of heat transfer improvement for pulsating flow in a periodic corrugated channel with discrete V-type winglets,” Int. Commun. Heat Mass Transf., vol. 134, pp. 105991, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105991.
  • J. Muñoz-Cámara, D. Crespí-Llorens, J. P. Solano and P. Vicente, “Baffled tubes with superimposed oscillatory flow: Experimental study of the fluid mixing and heat transfer at low net Reynolds numbers,” Exp. Therm. Fluid Sci., vol. 123, pp. 110324, May 2021. DOI: 10.1016/j.expthermflusci.2020.110324.
  • Z. Habibi, M. Karami, M. Jarrahi, E. Shirani and H. Peerhossaini, “Some observations on the spatiotemporal orbits structure and heat transfer enhancement in pulsating flow,” Int. J. Therm. Sci., vol. 125, pp. 428–439, Mar. 2018. DOI: 10.1016/j.ijthermalsci.2017.12.006.
  • N. Kurtulmuş and B. Sahin, “Experimental investigation of pulsating flow structures and heat transfer characteristics in sinusoidal channels,” Int. J. Mech. Sci., vol. 167, pp. 105268, Feb. 2020. DOI: 10.1016/j.ijmecsci.2019.105268.
  • H. Huang, Y. N. Bian, Y. Liu, F. G. Zhang, H. Arima and Y. Ikegami, “Numerical and experimental analysis of heat transfer enhancement and pressure drop characteristics of laminar pulsatile flow in grooved channel with different groove lengths,” Appl. Therm. Eng., vol. 137, pp. 632–643, Jun. 2018. DOI: 10.1016/j.applthermaleng.2018.04.013.
  • S. Chokphoemphun, S. Hongkong, S. Thongdaeng and S. Chokphoemphun, “ Experimental study and neural networks prediction on thermal performance assessment of grooved channel air heater,” Int. J. Heat Mass Transf., vol. 163, pp. 120397, Dec. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120397.
  • Z. H. Zhang, Q. H. Li, C. Bruecker and Q. Zhang, “Enhanced thermal performance with high-amplitude intermittent impingement cooling,” Int. J. Heat Mass Transf., vol. 185, pp. 122359, Apr. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122359.
  • S. Eiamsa-Ard and P. Promvonge, “Numerical study on heat transfer of turbulent channel flow over periodic grooves,” Int. Commun. Heat Mass Transf., vol. 35, no. 7, pp. 844–852, Aug. 2008. DOI: 10.1016/j.icheatmasstransfer.2008.03.008.
  • H. G. Weller, G. Tabor, H. Jasak and C. Fureby, “A tensorial approach to computational continuum mechanics using object-oriented techniques,” Comput. Phys., vol. 12, no. 6, pp. 620–631, Nov.–Dec. 1998. DOI: 10.1063/1.168744.
  • S. Uchida, “The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe,” J. Appl. Math. Phys. (ZAMP), vol. 7, no. 5, pp. 403–422, Jan. 1956. DOI: 10.1007/BF01606327.
  • B. Ünsal, S. Ray, F. Durst and Ö. Ertunç, “Pulsating laminar pipe flows with sinusoidal mass flux variations,” Fluid Dyn. Res., vol. 37, no. 5, pp. 317–333, Nov. 2005. DOI: 10.1016/j.fluiddyn.2005.06.002.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” Int. J. Heat Mass Transf., vol. 24, no. 4, pp. 715–726, Apr. 1981. DOI: 10.1016/0017-9310(81)90015-6.
  • S. Kimura and A. Bejan, “The “heatline” visualization of convective heat transfer,” J. Heat Transf., vol. 105, no. 4, pp. 916–919, Nov. 1983. DOI: 10.1115/1.3245684.
  • K. Hooman, H. Gurgenci and I. Dincer, “Heatline and energy-flux-vector visualization of natural convection in a porous cavity occupied by a fluid with temperature-dependent viscosity,” J. Por. Media, vol. 12, no. 3, pp. 265–275, Jan. 2009. DOI: 10.1615/JPorMedia.v12.i3.60.
  • K. Hooman, “Energy flux vectors as a new tool for convection visualization,” Int. J. Numer. Method, vol. 20, no. 2, pp. 240–249, Mar. 2010. DOI: 10.1108/09615531011016984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.