Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 9
212
Views
1
CrossRef citations to date
0
Altmetric
Articles

Significance of geothermal viscosity for the magnetic fluid flow between co-rotating porous surfaces

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 980-991 | Received 14 Sep 2022, Accepted 05 Jan 2023, Published online: 20 Mar 2023

References

  • V. T. Karman, “Uber laminare und turbulente reibung,” Z. Angew. Math. Mech., vol. 1, no. 4, pp. 233–252, 1921.
  • W. Cochran, “The flow due to a rotating disc,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 30. Cambridge University Press, 1934, pp. 365–375.
  • E. R. Benton, “On the flow due to a rotating disk,” J. Fluid Mech., vol. 24, no. 04, pp. 781–800, 1966. DOI: 10.1017/S0022112066001009.
  • H. A. Attia, “Numerical study of flow and heat transfer of a non-Newtonian fluid on a rotating porous disk,” Appl. Math. Comput., vol. 163, no. 1, pp. 327–342, 2005.
  • F. Frusteri and E. Osalusi, “On mhd and slip flow over a rotating porous disk with variable properties,” Int. Commun. Heat Mass Transfer, vol. 34, no. 4, pp. 492–501, 2007. DOI: 10.1016/j.icheatmasstransfer.2007.01.004.
  • K. A. Maleque, “Effects of combined temperature and depth-dependent viscosity and hall current on an unsteady mhd laminar convective flow due to a rotating disk,” Chem. Eng. Commun., vol. 197, no. 4, pp. 506–521, 2009. DOI: 10.1080/00986440903288492.
  • P. Ram, K. Sharma and A. Bhandari, “Effect of porosity on revolving ferrofluid flow with rotating disk,” Int. J. Fluids Eng., vol. 3, no. 3, pp. 261–271, 2011.
  • K. Sharma, N. Vijay, S. Kumar and O. Makinde, “Hydromagnetic boundary layer flow with heat transfer past a rotating disc embedded in a porous medium,” Heat Transfer - Asian Res., vol. 50, no. 5, pp. 4342–4353, 2021. DOI: 10.1002/htj.22078.
  • K. Sharma, N. Vijay and S. Kumar, “Significance of geothermal viscosity and heat generation/absorption on magnetic nanofluid flow and heat transfer,” Numer. Heat Transfer, Part A: Appl., vol. 82, no. 3, pp. 70–81, 2022. DOI: 10.1080/10407782.2022.2066921.
  • M. Turkyilmazoglu, “Mhd fluid flow and heat transfer due to a shrinking rotating disk,” Comput. Fluids, vol. 90, pp. 51–56, 2014. DOI: 10.1016/j.compfluid.2013.11.005.
  • K.-L. Hsiao, “Micropolar nanofluid flow with mhd and viscous dissipation effects towards a stretching sheet with multimedia feature,” Int. J. Heat Mass Transfer, vol. 112, pp. 983–990, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.042.
  • K.-L. Hsiao, “Stagnation electrical mhd nanofluid mixed convection with slip boundary on a stretching sheet,” Appl. Thermal Eng., vol. 98, pp. 850–861, 2016. DOI: 10.1016/j.applthermaleng.2015.12.138.
  • K.-L. Hsiao, “To promote radiation electrical mhd activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method,” Energy, vol. 130, pp. 486–499, 2017. DOI: 10.1016/j.energy.2017.05.004.
  • K.-L. Hsiao, “Combined electrical mhd heat transfer thermal extrusion system using maxwell fluid with radiative and viscous dissipation effects,” Appl. Thermal Eng., vol. 112, pp. 1281–1288, 2017. DOI: 10.1016/j.applthermaleng.2016.08.208.
  • M. V. Krishna, K. Jyothi and A. J. Chamkha, “Heat and mass transfer on unsteady, magnetohydrodynamic, oscillatory flow of second-grade fluid through a porous medium between two vertical plates, under the influence of fluctuating heat source/sink, and chemical reaction,” Int. J. Fluid Mech. Res., vol. 45, no. 5, pp. 459–477, 2018. DOI: 10.1615/InterJFluidMechRes.2018024591.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on mhd rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium,” Results Phys., vol. 15, pp. 102652, 2019. DOI: 10.1016/j.rinp.2019.102652.
  • M. V. Krishna, B. Swarnalathamma and A. J. Chamkha, “Investigations of soret, joule and hall effects on mhd rotating mixed convective flow past an infinite vertical porous plate,” J. Ocean Eng. Sci., vol. 4, no. 3, pp. 263–275, 2019. DOI: 10.1016/j.joes.2019.05.002.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on mhd rotating flow of elastico-viscous fluid through porous medium,” Int. Commun. Heat Mass Transfer, vol. 113, pp. 104494, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104494.
  • M. V. Krishna, “Hall and ion slip effects on radiative mhd rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature,” Int. Commun. Heat Mass Transfer, vol. 126, pp. 105399, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105399.
  • A. Mushtaq and M. Mustafa, “Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions,” Results Phys., vol. 7, pp. 3137–3144, 2017. DOI: 10.1016/j.rinp.2017.08.031.
  • D. Ram, D. Bhandari, D. Tripathi and K. Sharma, “Propagation of h1n1 virus through saliva movement in oesophagus: A mathematical model,” Eur. Phys. J. Plus, vol. 137, no. 7, pp. 866, 2022. DOI: 10.1140/epjp/s13360-022-03070-2.
  • N. Acharya, S. Maity and P. K. Kundu, “Framing the hydrothermal features of magnetized TiO2-CoFe2O4 water-based steady hybrid nanofluid flow over a radiative revolving disk,” Multidisc. Model. Mater. Struct., vol. 16, no. 4, pp. 765–790, 2019.
  • I. L. Animasaun, N. A. Shah, A. Wakif, B. Mahanthesh, R. Sivaraj and O. K. Koriko, Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization. New York: Chapman and Hall/CRC, 2022. DOI: 10.1201/9781003217374.
  • K. Sharma, N. Vijay, S. Kumar and R. Mehta, “Heat and mass transfer study of hydrocarbon based magnetic nanofluid (C1-20B) with geothermal viscosity,” Proc. Inst. Mech. Eng. E, 2022. DOI: 10.1177/09544089221079949.
  • P. Chapple and V. Stokes, On the Flow between a Rotating and a Stationary Disk; Report No. fld 8; Dept Mech. Eng., Princeton, NJ, USA: Princeton University, 1962.
  • G. Mellor, P. Chapple and V. Stokes, “On the flow between a rotating and a stationary disk,” J. Fluid Mech., vol. 31, no. 01, pp. 95–112, 1968. DOI: 10.1017/S0022112068000054.
  • P. Chaturani and S. Narasimman, “Numerical solution of a micropolar fluid flow between two rotating coaxial disks,” Acta Mechanica, vol. 89, no. 1–4, pp. 133–145, 1991. DOI: 10.1007/BF01171251.
  • C.-Y. Soong, C.-C. Wu, T.-P. Liu and T.-P. Liu, “Flow structure between two co-axial disks rotating independently,” Exp. Thermal Fluid Sci., vol. 27, no. 3, pp. 295–311, 2003. DOI: 10.1016/S0894-1777(02)00310-2.
  • G. M. Sobamowo and A. Akinshilo, “Double diffusive magnetohydrodynamic squeezing flow of nanofluid between two parallel disks with slip and temperature jump boundary conditions,” ACM, vol. 11, no. 2, pp. 167–182, 2017. DOI: 10.24132/acm.2017.367.
  • N. Vijay and K. Sharma, “Heat and mass transfer study of ferrofluid flow between co-rotating stretchable disks with geothermal viscosity: Ham analysis,” Chin. J. Phys., vol. 78, pp. 83–95, 2022. DOI: 10.1016/j.cjph.2022.05.014.
  • M. Imtiaz, T. Hayat, A. Alsaedi and B. Ahmad, “Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects,” Int. J. Heat Mass Transfer, vol. 101, pp. 948–957, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.114.
  • S. Akhter, M. Ashraf and K. Ali, “Mhd flow and heat transfer analysis of micropolar fluid through a porous medium between two stretchable disks using quasi-linearization method,” Iran. J. Chem. Chem. Eng. (IJCCE), vol. 36, no. 4, pp. 155–169, 2017.
  • P. Sudarsana Reddy, K. Jyothi and M. Suryanarayana Reddy, “Flow and heat transfer analysis of carbon nanotubes-based maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation,” J Braz. Soc. Mech. Sci. Eng., vol. 40, no. 12, pp. 1–16, 2018. DOI: 10.1007/s40430-018-1494-9.
  • Q. M. Al-Mdallal, A. Renuka, M. Muthtamilselvan and B. Abdalla, “Ree-eyring fluid flow of cu-water nanofluid between infinite spinning disks with an effect of thermal radiation,” Ain Shams Eng. J., vol. 12, no. 3, pp. 2947–2956, 2021. DOI: 10.1016/j.asej.2020.12.016.
  • J. Umavathi, S. L. Patil, B. Mahanthesh and O. A. Bég, “Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with robin boundary conditions,” Proc. Inst. Mech. Eng. N J. Nanomater. Nanoeng. Nanosyst., vol. 235, no. 3–4, pp. 67–81, 2021.
  • I. Mehdi, Z. Abbas and J. Hasnain, “Mhd flow and heat transfer between two rotating disks under the effects of nanomaterials (mos2) and thermal radiation,” Case Stud. Thermal Eng., vol. 33, pp. 101968, 2022. DOI: 10.1016/j.csite.2022.101968.
  • T. Hussain, H. Xu, A. Raees and Q.-K. Zhao, “Unsteady three-dimensional mhd flow and heat transfer in porous medium suspended with both microorganisms and nanoparticles due to rotating disks,” J. Thermal Anal. Calorim., vol. 147, no. 2, pp. 1607–1619, 2022. DOI: 10.1007/s10973-020-10528-x.
  • K. Sharma, S. Kumar, A. Narwal, F. Mebarek-Oudina and I. Animasaun, “Convective mhd fluid flow over stretchable rotating disks with dufour and soret effects,” Int. J. Appl. Comput. Math., vol. 8, no. 4, pp. 159, 2022. DOI: 10.1007/s40819-022-01357-7.
  • V. K. Joshi, P. Ram, D. Tripathi and K. Sharma, “Numerical investigation of magnetic nanofluids flow over rotating disk embedded in porous medium,” Thermal Sci., vol. 22, no. 6B, pp. 2883–2895, 2018. DOI: 10.2298/TSCI170323139J.
  • M. Turkyilmazoglu, “Flow and heat simultaneously induced by two stretchable rotating disks,” Phys. Fluids, vol. 28, no. 4, pp. 043601, 2016. DOI: 10.1063/1.4945651.
  • J. Ahmed, M. Khan and L. Ahmad, “Swirling flow of maxwell nanofluid between two coaxially rotating disks with variable thermal conductivity,” J Braz. Soc. Mech. Sci. Eng., vol. 41, no. 2, pp. 97, 2019. DOI: 10.1007/s40430-019-1589-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.