Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 9
378
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis of the laminar flow and enhanced heat transfer rate through a triangular array of cylinders embedded in a fluid-saturated porous media with mixed convection

ORCID Icon & ORCID Icon
Pages 1032-1053 | Received 19 Aug 2022, Accepted 14 Jan 2023, Published online: 15 Mar 2023

References

  • R. Pravesh, A. Dhiman, and R. P. Bharti, “Non-Newtonian power-law fluid’s thermal characteristics across periodic array of circular cylinders,” J. Braz. Soc. Mech. Sci. Eng., vol. 41, no. 2, pp. 1–20, 2019. DOI: 10.1007/s40430-019-1584-3.
  • T. S. Wung and C. J. Chen, “Finite analytic solution of convective heat transfer for tube arrays in cross-flow: Part I-Flow Field Analysis,” J. Heat Transfer, vol. 111, no. 3, pp. 633–640, 1989. DOI: 10.1115/1.3250730.
  • R. Pravesh, A. Dhiman, and R. P. Bharti, “Aiding buoyancy mixed convection flow and thermal features across a periodic array of heated cylinders,” Int. J. Heat Mass Transf., vol. 130, pp. 1141–1162, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.035.
  • M. Asif and A. Dhiman, “Analysis of laminar flow across a triangular periodic array of heated cylinders,” J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 7, pp. 1–24, 2018. DOI: 10.1007/s40430-018-1273-7.
  • V. K. Mandhani, R. P. Chhabra, and V. Eswaran, “Forced convection heat transfer in tube banks in cross flow,” Chem. Eng. Sci., vol. 57, no. 3, pp. 379–391, 2002. DOI: 10.1016/S0009-2509(01)00390-6.
  • G. F. Al-Sumaily, J. Sheridan, and M. C. Thompson, “Analysis of forced convection heat transfer from a circular cylinder embedded in a porous medium,” Int. J. Therm. Sci., vol. 51, no. 1, pp. 121–131, 2012. DOI: 10.1016/j.ijthermalsci.2011.08.018.
  • L. B. Younis, “Cross-flow heat exchanger embedded within a porous medium,” J. Por. Media, vol. 13, no. 11, pp. 981–988, 2010. DOI: 10.1615/JPorMedia.v13.i11.40.
  • M. Layeghi and A. Nouri-Borujerdi, “Darcy model for the study of the fluid flow and heat transfer around a cylinder embedded in porous media,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 7, no. 5, pp. 323–329, 2006. DOI: 10.1080/15502280600826340.
  • M. Vynnycky and I. Pop, “Mixed convection due to a finite horizontal flat plate embedded in a porous medium,” J. Fluid Mech., vol. 351, pp. 359–378, 1997. DOI: 10.1017/S0022112097006952.
  • S. E. Ahmed, A. Abderrahmane, S. Alotaibi, O. Younis, R. A. Almasri, and W. K. Hussam, “Enhanced heat transfer for NePCM-melting-based thermal energy of finned heat pipe,” Nanomaterials, vol. 12, no. 1, pp. 1–13, 2022. DOI: 10.3390/nano12010129.
  • I. Pop and P. Cheng, “Flow past a circular cylinder embedded in a porous medium based on the Brinkman model,” Int. J. Eng. Sci., vol. 30, no. 2, pp. 257–262, 1992. DOI: 10.1016/0020-7225(92)90058-O.
  • M. Layeghi and A. Nouri-Borujerdi, “Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media,” J. Por. Media, vol. 7, no. 3, pp. 239–247, 2004. DOI: 10.1615/JPorMedia.v7.i3.70.
  • G. F. Al-Sumaily and M. C. Thompson, “Forced convection from a circular cylinder in pulsating flow with and without the presence of porous media,” Int. J. Heat Mass Transf., vol. 61, no. 1, pp. 226–244, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.067.
  • W. S. Wong, D. A. S. Rees, and I. Pop, “Forced convection past a heated cylinder in a porous medium using a thermal nonequilibrium model: Finite Péclet number effects,” Int. J. Therm. Sci., vol. 43, no. 3, pp. 213–220, 2004. DOI: 10.1016/j.ijthermalsci.2003.07.005.
  • G. F. Al-Sumaily, A. Nakayama, J. Sheridan, and M. C. Thompson, “The effect of porous media particle size on forced convection from a circular cylinder without assuming local thermal equilibrium between phases,” Int. J. Heat Mass Transf., vol. 55, no. 1314, pp. 3366–3378, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.007.
  • K. Nasr, S. Ramadhyani, and R. Viskanta, “An experimental investigation on forced convection heat transfer from a cylinder embedded in a packed bed,” J. Heat Transfer, vol. 116, no. 1, pp. 73–80, 1994. DOI: 10.1115/1.2910886.
  • W. Lin, G. Xie, J. Yuan, and B. Sundén, “Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model,” Heat Transf. Eng., vol. 37, no. 34, pp. 314–322, 2016. DOI: 10.1080/01457632.2015.1052682.
  • P. X. Jiang, B. X. Wang, D. A. Luo, and Z. P. Ren, “Fluid flow and convective heat transfer in a vertical porous annulus,” Numer. Heat Transf. Part A Appl., vol. 30, no. 3, pp. 305–320, 1996. DOI: 10.1080/10407789608913842.
  • M. Layeghi, “Numerical analysis of wooden porous media effects on heat transfer from a staggered tube bundle,” J. Heat Transfer, vol. 130, no. 1, pp. 2–7, 2008. DOI: 10.1115/1.2780184.
  • G. F. Al-Sumaily, “Forced convection heat transfer from a bank of circular cylinders embedded in a porous medium,” J. Heat Transfer, vol. 136, no. 4, pp. 1–11, 2014. DOI: 10.1115/1.4025661.
  • C. Y. Wang, “Transverse flow over an array of cylinders embedded in a porous medium,” J. Por. Media, vol. 20, no. 8, pp. 749–759, 2017. DOI: 10.1615/JPorMedia.v20.i8.50.
  • A. R. Martin, C. Saltiel, and W. Shyy, “Frictional losses and convective heat transfer in sparse, periodic cylinder arrays in cross flow,” Int. J. Heat Mass Transf., vol. 41, no. 15, pp. 2383–2397, 1998. DOI: 10.1016/S0017-9310(97)00300-1.
  • S. Dhinakaran and J. Ponmozhi, “Heat transfer from a permeable square cylinder to a flowing fluid,” Energy Convers. Manag., vol. 52, no. 5, pp. 2170–2182, 2011. DOI: 10.1016/j.enconman.2010.12.027.
  • T. R. Vijaybabu, K. Anirudh, and S. Dhinakaran, “LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder,” Int. J. Heat Mass Transf., vol. 120, pp. 267–283, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.010.
  • T. R. Vijaybabu, K. Anirudh, and S. Dhinakaran, “Mixed convective heat transfer from a permeable square cylinder: A lattice Boltzmann analysis,” Int. J. Heat Mass Transf., vol. 115, pp. 854–870, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.033.
  • S. Rashidi, M. Bovand, I. Pop, and M. S. Valipour, “Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder,” Transp. Porous Med., vol. 102, no. 2, pp. 207–225, 2014. DOI: 10.1007/s11242-014-0272-0.
  • M. A. Waheed, “Heatfunction formulation of thermal convection in rectangular enclosures filled with porous media,” Numer. Heat Transf. Part A Appl., vol. 55, no. 2, pp. 185–204, 2009. DOI: 10.1080/10407780802603246.
  • S. Ergun, “Fluid flow through packed columns,” Chem. Eng. Prog., vol. 48, no. 2, pp. 89–94, 1952.
  • S. Jamshed and A. Dhiman, “Channel-confined wake structure interactions between two permeable side-by-side bars of a square cross-section,” J. Fluids Eng., vol. 143, no. 9, pp. 1–14, 2021. DOI: 10.1115/1.4050516.
  • D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed. New York: Springer, 2006.
  • R. P. Ram, R. P. Bharti, and A. K. Dhiman, “Forced convection flow and heat transfer across an in-line bank of circular cylinders,” Can. J. Chem. Eng., vol. 94, no. 7, pp. 1381–1395, 2016. DOI: 10.1002/cjce.22483.
  • M. Asif and A. Dhiman, “Impact of mixed convection on flow dynamics and heat transfer through an isotropic porous triangular array of periodic heated/cooled cylinders,” Can. J. Chem. Eng., vol. 99, no. S1, pp. S838–S862, 2021. DOI: 10.1002/cjce.24034.
  • C. J. Chen and T. S. Wung, “Finite analytic solution of convective heat transfer for tube arrays in cross-flow: Part II-Heat transfer analysis,” J. Heat Transfer, vol. 111, no. 3, pp. 641–648, 1989. DOI: 10.1115/1.3250730.
  • Z. Algirdas, Heat Transfer from Tubes in Crossflow, vol. 18, pp. 87–159. Vilnius: USSR, 1972.
  • P.-X. Jiang, Z.-P. Ren, B.-X. Wang, and Z. Wang, “Forced convective heat transfer in a plate channel filled with solid particles,” J. Therm. Sci., vol. 5, no. 1, pp. 43–53, 1996. DOI: 10.1007/BF02663732.
  • H. O. Sayehvand, E. Khalili Dehkordi, and A. Basiri Parsa, “Numerical analysis of forced convection heat transfer from two tandem circular cylinders embedded in a porous medium,” Therm. Sci., vol. 21, no. 5, pp. 2117–2128, 2017. DOI: 10.2298/TSCI150307081S.
  • W. Al-Kouz et al., “Galerkin finite element analysis of Darcy–Brinkman–Forchheimer natural convective flow in conical annular enclosure with discrete heat sources,” Energy Rep., vol. 7, pp. 6172–6181, 2021. DOI: 10.1016/j.egyr.2021.09.071.
  • S. Jamshed, R. Kharbanda, and A. Dhiman, “Study of flow through and around a pair of porous cylinders covering steady and unsteady regimes,” Phys. Fluids, vol. 34, no. 10, pp. 103601, 2022. DOI: 10.1063/5.0045281.
  • C. Kumar, D. Chatterjee, and B. Mondal, “The role of cross thermal buoyancy in initiating vortex shedding behind a permeable square cylinder at low Reynolds numbers,” J. Por. Media, vol. 24, no. 11, pp. 65–84, 2021. DOI: 10.1016/j.ijheatmasstransfer.2011.08.016.
  • W. Al-Kouz et al., “Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method,” Eur. Phys. J. Plus, vol. 136, no. 11, pp. 1–23, 2021. DOI: 10.1140/epjp/s13360-021-02192-3.
  • R. Slimani et al., “Natural convection analysis flow of Al2O3-Cu/water hybrid nanofluid in a porous conical enclosure subjected to the magnetic field,” Eur. Phys. J. Appl. Phys., vol. 92, no. 1, pp. 10904–10910, 2020. DOI: 10.1051/epjap/2020200260.
  • A. Sanyal and A. Dhiman, “Wake interactions in a fluid flow past a pair of side-by-side square cylinders in presence of mixed convection,” Phys. Fluids, vol. 29, no. 10, pp. 103602, 2017. DOI: 10.1063/1.5005118.
  • A. Sanyal and A. Dhiman, “Effect of thermal buoyancy on a fluid flowing past a pair of side-by-side square bluff-bodies in a low-Reynolds number flow regime,” Phys. Fluids, vol. 30, no. 6, pp. 063603, 2018. DOI: 10.1063/1.5025652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.