Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 9
52
Views
0
CrossRef citations to date
0
Altmetric
Articles

Impacts of combustion chamber location and tube bundle layout on the performance of three-pass hot-water steel boilers under the steady-state operation

ORCID Icon
Pages 1069-1090 | Received 04 Oct 2022, Accepted 13 Jan 2023, Published online: 15 Mar 2023

References

  • R. Hassanzadeh, P. Pirdavari, and M. Akbari Rendi, “Effects of hot gas passages on the performance of multi-pass cast-iron sectional boilers,” Appl. Therm. Eng., vol. 122, pp. 171–180, 2017. DOI: 10.1016/j.applthermaleng.2017.05.006.
  • R. Hassanzadeh, F. M. Mashoof, and M. Darvishyadegari, “Three-dimensional study on the heat transfer process in cast-iron sectional boilers,” Arab. J. Sci. Eng., vol. 43, no. 9, pp. 4561–4570, 2018. DOI: 10.1007/s13369-017-2996-y.
  • R. Hassanzadeh, R. Rahimi, and H. Pekel, “Effects of shell aspect ratio and combustion chamber location on thermal–hydraulic performance of hot-water steel boilers under steady-state operation,” Arab. J. Sci. Eng., vol. 46, no. 3, pp. 2629–2648, 2021. DOI: 10.1007/s13369-020-05171-5.
  • W. Judt, B. Ciupek, and R. Urbaniak, “Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber,” Energy, vol. 196, pp. 117093, 2020. DOI: 10.1016/j.energy.2020.117093.
  • M. A. Gómez, R. Martín, S. Chapela, and J. Porteiro, “Steady CFD combustion modeling for biomass boilers: An application to the study of the exhaust gas recirculation performance,” Energy Convers. Manage., vol. 179, pp. 91–103, 2019. DOI: 10.1016/j.enconman.2018.10.052.
  • J. Collazo, J. Porteiro, J. L. Míguez, E. Granada, and M. A. Gómez, “Numerical simulation of a small-scale biomass boiler,” Energy Convers. Manage., vol. 64, pp. 87–96, 2012. DOI: 10.1016/j.enconman.2012.05.020.
  • S. Echi, A. Bouabidi, Z. Driss, and M. S. Abid, “CFD simulation and optimization of industrial boiler,” Energy, vol. 169, pp. 105–114, 2019. DOI: 10.1016/j.energy.2018.12.006.
  • L. Zhang, Y. Jiang, W. Chen, S. Zhou, and P. Zhai, “Experimental and numerical investigation for hot water boiler with inorganic heat pipes,” Int. J. Heat Mass Transfer, vol. 114, pp. 743–747, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.108.
  • F. J. Gutiérrez Ortiz, “Modeling of fire-tube boilers,” Appl. Therm. Eng., vol. 31, no. 16, pp. 3463–3478, 2011. DOI: 10.1016/j.applthermaleng.2011.07.001.
  • M. Tognoli, B. Najafi, R. Marchesi, and F. Rinaldi, “Dynamic modelling, experimental validation, and thermo-economic analysis of industrial fire-tube boilers with stagnation point reverse flow combustor,” Appl. Therm. Eng., vol. 149, pp. 1394–1407, 2019. DOI: 10.1016/j.applthermaleng.2018.12.087.
  • D. Neshumayev, A. Ots, J. Laid, and T. Tiikma, “Experimental investigation of various turbulator inserts in gas-heated channels,” Exp. Therm. Fluid Sci., vol. 28, no. 8, pp. 877–886, 2004. DOI: 10.1016/j.expthermflusci.2004.01.005.
  • W. Beyne et al., “Dynamic and steady state performance model of fire tube boilers with different turn boxes,” Appl. Therm. Eng., vol. 149, pp. 1454–1462, 2019. DOI: 10.1016/j.applthermaleng.2018.09.103.
  • A. U. Atmaca, A. Erek, and H. M. Altay, “Comparison of two numerical approaches to the domestic hot water circuit in a combi boiler appliance,” Energy Build., vol. 127, pp. 1043–1056, 2016. DOI: 10.1016/j.enbuild.2016.06.053.
  • R. Buczyński, R. Weber, and A. Szlęk, “Innovative design solutions for small-scale domestic boilers: Combustion improvements using a CFD-based mathematical model,” J. Energy Inst., vol. 88, no. 1, pp. 53–63, 2015. DOI: 10.1016/j.joei.2014.04.006.
  • X. Zhang, J. Zhou, S. Sun, R. Sun, and M. Qin, “Numerical investigation of low NOx combustion strategies in tangentially-fired coal boilers,” Fuel, vol. 142, pp. 215–221, 2015. DOI: 10.1016/j.fuel.2014.11.026.
  • C. Schönnenbeck, G. Trouvé, M. Valente, P. Garra, and J. F. Brilhac, “Combustion tests of grape marc in a multi-fuel domestic boiler,” Fuel, vol. 180, pp. 324–331, 2016. DOI: 10.1016/j.fuel.2016.04.034.
  • M. A. Gómez, J. Porteiro, D. de la Cuesta, D. Patiño, and J. L. Míguez, “Numerical simulation of the combustion process of a pellet-drop-feed boiler,” Fuel, vol. 184, pp. 987–999, 2016. DOI: 10.1016/j.fuel.2015.11.082.
  • V. K. Verma, S. Bram, G. Gauthier, and J. De Ruyck, “Performance of a domestic pellet boiler as a function of operational loads: Part-2,” Biomass Bioenergy, vol. 35, no. 1, pp. 272–279, 2011. DOI: 10.1016/j.biombioe.2010.08.043.
  • M. Joachimiak et al., “Analysis of the heat transfer for processes of the cylinder heating in the heat-treating furnace on the basis of solving the inverse problem,” Int. J. Therm. Sci., vol. 145, pp. 105985, 2019. DOI: 10.1016/j.ijthermalsci.2019.105985.
  • X. Zhang, J. Yuan, Z. Chen, Z. Tian, and J. Wang, “A dynamic heat transfer model to estimate the flue gas temperature in the horizontal flue of the coal-fired utility boiler,” Appl. Therm. Eng., vol. 135, pp. 368–378, 2018. DOI: 10.1016/j.applthermaleng.2018.02.067.
  • E. Carlon et al., “Efficiency and operational behaviour of small-scale pellet boilers installed in residential buildings,” Appl. Energy, vol. 155, pp. 854–865, 2015. DOI: 10.1016/j.apenergy.2015.06.025.
  • R. Deeb, D. V. Sidenkov, and V. I. Salokhin, “Numerical investigation of thermal-hydraulic performance of circular and non-circular tubes in cross-flow,” HoBMSTU.SNS, vol. 2, no. 2, pp. 102–117, 2021. DOI: 10.18698/1812-3368-2021-2-102-117.
  • R. Deeb, “New correlations for predicting convective heat transfer of single and multi-row heat exchangers employing staggered drop-shaped tubes,” Int. J. Heat Mass Transfer, vol. 202, pp. 123689, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123689.
  • S. Patankar, Numerical heat transfer and fluid flow. USA: Taylor & Francis, 2018.
  • F. Karimi, H. Xu, Z. Wang, M. Yang, and Y. Zhang, “Numerical simulation of steady mixed convection around two heated circular cylinders in a square enclosure,” Heat Transfer Eng., vol. 37, no. 1, pp. 64–75, 2016. DOI: 10.1080/01457632.2015.1042343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.