Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 9
69
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical evaluation of heat irreversiblity in porous medium combustion of third-grade fluid subjected to Newtonian cooling

, &
Pages 1091-1105 | Received 26 Aug 2022, Accepted 10 Jan 2023, Published online: 15 Mar 2023

References

  • J. Hosseinpour and H. Mahdavy-Moghaddam, “Computational study of magnetic field effects on the nozzle of hydrogen micro flame,” Combust. Flame, vol. 220, pp. 247–256, Oct. 2020. DOI: 10.1016/j.combustflame.2020.07.003.
  • A. S. Faris, et al., “Effects of magnetic field on fuel consumption and exhaust emissions in two-stroke engine,” Energy Proc., vol. 18, pp. 327–338, Jun. 2012. DOI: 10.1016/j.egypro.2012.05.044.
  • M. VeeraKrishna and G. S. Reddy, “Unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel,” J. Anal., vol. 27, no. 1, pp. 103–120, 2019. DOI: 10.1007/s41478-018-0108-3.
  • S. Reza-E-Rabbi, S. Arifuzzaman, T. Sarkar, M. S. Khan and S. F. Ahmmed, “Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and Thermophoresis effects,” J. King Saud Univ. Sci., vol. 32, no. 1, pp. 690–701, Jan. 2020. DOI: 10.1016/j.jksus.2018.10.017.
  • M. Das, G. Mahanta, S. Shaw and S. Parida, “Unsteady MHD chemically reactive double-diffusive Casson fluid past a flat plate in porous medium with heat and mass transfer,” Heat Trans. Asian Res., vol. 48, no. 5, pp. 1761–1777, Mar. 2019. DOI: 10.1002/htj.21456.
  • S. Das, S. Sarkar and R. Jana, “Assessment of irreversible losses of non-Newtonian nanofluid flow underlying hall current, chemical reaction and thermal radiation,” World J. Eng., vol. 18, no. 2, pp. 228–250, Mar. 2021. DOI: 10.1108/WJE-07-2020-0266.
  • J. K. Madhukesh, G. K. Ramesh, E. H. Aly and A. J. Chamkha, “Dynamics of water conveying SWCNT nanoparticles and swimming microorganisms over a Riga plate subject to heat source/sink,” Alexandria Eng. J., vol. 61, no. 3, pp. 2418–2429, Mar. 2022. DOI: 10.1016/j.aej.2021.06.104.
  • A. Gailitis and O. Lielausis, “On a possibility to reduce the hydrodynamic resistance of a plate in aelectro-lyte,” Appl. Magnetohydrodynamics, vol. 12, pp. 143–146, 1961.
  • N. V. Ganesh, Q. M. Al-Mdallal, S. Al Fahel and S. Dadoa, “Riga-Plate flow of γAl2O3 water ethylene glycol with effective Prandtl number impacts,” Heliyon, vol. 5, no. 5, p. e01651, May 2019. DOI: 10.1016/j.heliyon.2019.e01651.
  • V. Ramanjini, G. Gopi Krishna, S. R. Mishra, S. V. Sailaja Kumari and H. K. Sree, “An unsteady axisymmetric Williamson nanofluid flow over a radially stretching Riga plate for the inclusion of mixed convection and thermal radiation,” Partial Differ. Equations Appl. Math., vol. 6, p. 100456, Dec. 2022. DOI: 10.1016/j.padiff.2022.100456.
  • M. T. Akolade and Y. O. Tijani, “A comparative study of three dimensional flow of Casson–Williamson nanofluids past a Riga plate: Spectral quasi-linearization approach,” Partial Differ. Equations Appl. Math., vol. 4, pp. 100108, Dec. 2021. DOI: 10.1016/j.padiff.2021.100108.
  • N. Abbas, S. Nadeem, S. Saleem and A. Issakhov, “Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: Exponentially stretching,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3967–3973, Dec. 2021. DOI: 10.1016/j.asej.2021.01.034.
  • R. Rizwana, A. Hussain and S. Nadeem, “Series solution of unsteady MHD oblique stagnation point flow of copper-water nanofluid flow towards Riga plate,” Heliyon, vol. 6, no. 10, p. e04689, Oct. 2020. DOI: 10.1016/j.heliyon.2020.e04689.
  • H. Vaidya, et al., “Mixed convective nanofluid flow over a non linearly stretched Riga plate,” Case Stud. Therm. Eng., vol. 24, pp. 100828, Apr. 2021. DOI: 10.1016/j.csite.2020.100828.
  • H. Waqas, A. Kafait, T. Muhammad and U. Farooq, “Numerical study for bio-convection flow of tangent hyperbolic nanofluid over a Riga plate with activation energy,” Alexandria Eng. J., vol. 61, no. 2, pp. 1803–1814, Feb. 2022. DOI: 10.1016/j.aej.2021.06.068.
  • K. Sarada, R. J. Punith Gowda, I. E. Sarris, R. N. Kumar and B. C. Prasannakumara, “Effect of magnetohydrodynamics on heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition,” Fluids, vol. 6, no. 8, p. 264, Jul. 2021. DOI: 10.3390/fluids6080264.
  • J. K. Madhukesh, A. Alhadhrami, R. N. Kumar, R. J. Punith Gowda, B. C. Prasannakumara and R. S. Varun Kumar, “Physical insights into the heat and mass transfer in Casson hybrid nanofluid flow induced by a Riga plate with thermophoretic particle deposition,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. Advance online publication. Aug. 2021. DOI: 10.1177/09544089211039305.
  • J. K. Madhukesh, R. S. Varun Kumar, R. J. Punith Gowda, B. C. Prasannakumara and S. A. Shehzad, “Thermophoretic particle deposition and heat generation analysis of Newtonian nanofluid flow through magnetized Riga plate,” Heat Trans., vol. 51, no. 4, pp. 3082–3098, Dec. 2021. DOI: 10.1002/htj.22438.
  • A. Bejan, “Second law analysis in heat transfer,” Energy, vol. 5, no. 8-9, pp. 720–732, Sept. 1980. DOI: 10.1016/0360-5442(80)90091-2.
  • A. Bejan, “Notes on the history of the method of entropy generation minimization (finite time thermodynamics),” J. Non-Equilib. Thermodyn., vol. 21, no. 3, pp. 239–242, December 1996.
  • A. Sciacovelli, V. Verda and E. Sciubba, “Entropy generation analysis as a design tool—A review,” Renewable Sustainable Energy Rev., vol. 43, pp. 1167–1181, Mar. 2015. DOI: 10.1016/j.rser.2014.11.104.
  • S. O. Adesanya, J. A. Falade, S. Jangili and O. A. Bég, “Irreversibility analysis for reactive third-grade fluid flow and heat transfer with convective wall cooling,” Alexandria Eng. J., vol. 56, no. 1, pp. 153–160, March 2017. DOI: 10.1016/j.aej.2016.09.017.
  • S. O. Salawu and E. O. Fatunmbi, “Inherent irreversibility of hydromagnetic third-grade reactive poiseuille flow of a variable viscosity in porous media with convective cooling,” J. Serb. Soc. Comput. Mech., vol. 11, no. 1, pp. 46–58, Dec. 2017. DOI: 10.24874/jsscm.2017.11.01.05.
  • M. Madhu, N. S. Shashikumar, B. J. Gireesha and N. Kishan, “Second law analysis of MHD third-grade fluid flow through the micro-channel,” Pramana – J. Phys., vol. 95, no. 1, pp. 216, February 2021. DOI: 10.1007/s12043-020-02037-1.
  • S. O. Salawu, R. A. Kareem and S. A. Shonola, “Radiative thermal criticality and entropy generation of hydromagnetic reactive Powell–Eyring fluid in saturated porous media with variable conductivity,” Energy Rep., vol. 5, pp. 480–488, Nov. 2019. 2019.04 014. DOI: 10.1016/j.egyr.
  • S. O. Adesanya, T. A. Yusuf and R. S. Lebelo, “Nonlinear mixed convection in a reactive third‐grade fluid flow with convective wall cooling and variable properties,” Mathematics, vol. 10, no. 22, pp. 4276, Nov. 2022. DOI: 10.3390/math10224276.
  • M. Almakki, H. Mondal and P. Sibanda, “Entropy generation in magneto nanofluid flow with joule heating and thermal radiation,” World J. Eng., vol. 17, no. 1, pp. 1–11, Jan. 2020. DOI: 10.1108/WJE-06-2019-0166.
  • A. Eegunjobi, O. Makinde, M. Tshehla and O. Franks, “Irreversibility analysis of unsteady couette flow with variable viscosity,” J. Hydrodyn., vol. 27, no. 2, pp. 304–310, Apr. 2015. DOI: 10.1016/S1001-6058(15)60485-1.
  • R. Kareem, O. Salawu and Y. Yan, “Analysis of transient Rivlin-Ericksen fluid and irreversibility of exothermic reactive hydromagnetic variable viscosity,” J. Appl. Comput. Mech., vol. 6, no. 1, pp. 26–36, Jan. 2020. DOI: 10.22055/JACM.2019.28216.1460.
  • S. Ahmad, M. Farooq, A. Anjum and N. A. Mir, “Squeezing flow of convectively heatedfluid in porous medium with binary chemical reaction and activation energy,” Adv. Mech. Eng., vol. 11, no. 10, p. 1687814019883774, Oct. 2019. DOI: 10.1177/1687814019883774.
  • L. Rundora and O. D. Makinde, “Analysis of unsteady MHD reactive flow of non-newtonian fluidthrough a porous saturated medium with asymmetric boundary conditions,” Iran J. Sci. Technol. Trans. Mech. Eng., vol. 40, no. 3, pp. 189–201, Jul. 2016. DOI: 10.1007/s40997-016-0023-7.
  • L. Rundora and O. D. Makinde, “Effects of Navier slip on unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions,” J. Hydrodyn., vol. 27, no. 6, pp. 934–944, Dec. 2015. DOI: 10.1016/S1001-6058(15)60556-X.
  • G. Ibáñez, A. López, I. López, J. Pantoja, J. Moreira and O. Lastres, “Optimization of MHDnanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective–radiative boundary conditions,” J. Therm. Anal. Calorim., vol. 135, no. 6, pp. 3401–3420, 2019. DOI: 10.1007/s10973-018-7558-3.
  • M. VeeraKrishna, G. S. Reddy and A. Chamkha, “Hall effects on unsteady mhd oscillatory free convective flow of second grade fluid through porous medium between two vertical plates,” Phys. Fluids, vol. 30, no. 2, p. 023106, Feb. 2018. DOI: 10.1063/1.5010863.
  • F. Yue, P. Li and C. Zhao, “Numerical investigation of thermally developing non-Darcy forced convection in a porous circular duct with asymmetric entrance temperature under ltne condition,” Transp. Porous Med., vol. 136, no. 2, pp. 639–655, Jan. 2021. C DOI: 10.1007/s11242-020-01533-7.
  • T. Siva, S. Jangili and B. Kumbhakar, “Analytical solution to optimise the entropy generation in EMHD flow of non-Newtonian fluid through a microchannel,” Pramana – J. Phys., vol. 96, no. 4, pp. 168, Sept. 2022. DOI: 10.1007/s12043-022-02416-w.
  • B. Mallikarjuna, J. Srinivas, G. G. Krishna, O. A. Bég and A. Kadir, “Spectral numerical study of entropy generation in magneto convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects,” J. Therm. Sci. Eng., vol. 14, no. 1, pp. 1–36, Apr. 2021. DOI: 10.1115/1.4050935.
  • J. V. Ramana Murthy and J. Srinivas, “Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel,” Int. J. Heat Mass Transf., vol. 65, pp. 254–264, Oct. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.048.
  • R. J. Punith Gowda, R. N. Kumar, A. M. Jyothi, B. C. Prasannakumara and I. E. Sarris, “Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid,” Processes, vol. 9, no. 4, p. 702, Apr. 2021. DOI: 10.3390/pr9040702.
  • M. Saqlain, et al., “and mass transfer analysis of chemically reactive non-Newtonian fluid with the implementation of generalized Fourier’s and Fick’s laws over a vertical sheet,” Waves Random Complex Media, pp. 1–18, Apr. 2022. DOI: 10.1080/17455030.2022.2055204.
  • S. A. A. Shah, N. A. Ahammad, E. Din, F. Gamaoun, A. U. Awan and B. Ali, “Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet,” Nanomaterials (Basel), vol. 12, no. 13, pp. 2174, Jun. 2022. PMID: 35808009; PMCID: PMC9268617. DOI: 10.3390/nano12132174.
  • S. S. Okoya, “On the transition for a generalized Couette flow of a reactive third-grade fluid with viscous dissipation,” Int. Commun. Heat Mass Transf., vol. 35, no. 2, pp. 188–196, Feb. 2008. DOI: 10.1016/j.icheatmasstransfer.2007.06.012.
  • S. S. Okoya, “Disappearance of criticality for reactive third-grade fluid with Reynold’s model viscosity in a flat channel,” Int. J. Non-Linear. Mech., vol. 46, no. 9, pp. 1110–1115, Nov. 2011. DOI: 10.1016/j.ijnonlinmec.2011.04.008.
  • S. S. Okoya, “Computational study of thermal influence in axial annular flow of a reactive third grade fluid with non-linear viscosity,” Alexandria Eng. J., vol. 58, no. 1, pp. 401–411, Mar. 2019. DOI: 10.1016/j.aej.2019.01.001.
  • M. Abdul Mujeebu, M. Z. Abdullah, M. Z. Abu Bakar, A. A. Mohamad, R. M. N. Muhad and M. K. Abdullah, “Combustion in porous media and its applications – A comprehensive survey,” J. Environ. Manage., vol. 90, no. 8, pp. 2287–2312, Jun. 2009. DOI: 10.1016/j.jenvman.2008.10.009.
  • A. Banerjee and D. Paul, “Developments and applications of porous medium combustion: A recent review,” Energy, vol. 221, p. 119868, Apr. 2021. DOI: 10.1016/j.energy.2021.119868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.