Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 10
187
Views
5
CrossRef citations to date
0
Altmetric
Articles

Single and multiple walled CNTs-TiO2 ternary hybrid nanofluid flow of Williamson fluid in an unsteady combined convective regime: An entropy analysis

& ORCID Icon
Pages 1216-1237 | Received 17 Oct 2022, Accepted 24 Jan 2023, Published online: 13 Mar 2023

References

  • Z. Hussain, “Heat transfer through temperature dependent viscosity hybrid nanofluid subject to homogeneous-heterogeneous reactions and melting condition: A comparative study,” Phys. Scr., vol. 96, no. 1, pp. 015210, 2021. DOI: 10.1088/1402-4896/abc5ef.
  • A. S. Oke, “Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 16015–16031, 2022. DOI: 10.1007/s13369-022-06838-x.
  • S. Manjunatha et al., “Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet,” J. Appl. Comput. Mech., vol. 8, no. 4, pp. 1279–1286, 2022.
  • U. Nazir et al., “Significant production of thermal energy in partially ionized hyperbolic tangent material based on ternary hybrid nanomaterials,” Energies, vol. 14, no. 21, pp. 6911, 2021. DOI: 10.3390/en14216911.
  • T. Gul and A. Saeed, “Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2077471.
  • S. J. Tans et al., “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, no. 6624, pp. 474–477, 1997. DOI: 10.1038/386474a0.
  • J. W. G. Wilder et al., “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 59–62, 1998. DOI: 10.1038/34139.
  • M. F. Yu et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, no. 5453, pp. 637–640, 2000. DOI: 10.1126/science.287.5453.637.
  • R. Sadri et al., “An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 151, 2014. DOI: 10.1186/1556-276X-9-151.
  • Z. Hussain et al., “Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: A numerical study,” Comput. Methods Appl. Mech. Eng., vol. 329, pp. 40–54, 2018. DOI: 10.1016/j.cma.2017.09.026.
  • T. Hayat et al., “Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness,” Adv. Powder Technol., vol. 27, no. 4, pp. 1677–1688, 2016. DOI: 10.1016/j.apt.2016.06.001.
  • Z. Hussain et al., “Mixed convective flow of CNTs nanofluid subject to varying viscosity and reactions,” Sci. Rep., vol. 11, no. 1, pp. 22838, 2021. DOI: 10.1038/s41598-021-02228-9.
  • M. Waqas et al., “Interaction of heat generation in nonlinear mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11080–11086, 2020. DOI: 10.1016/j.jmrt.2020.07.068.
  • K. Ahmed et al., “Physical aspects of homogeneous-heterogeneous reactions on MHD Williamson fluid flow across a nonlinear stretching curved surface together with convective boundary conditions,” Math. Probl. Eng., vol. 2021, pp. 1–13, 2021. DOI: 10.1155/2021/7016961.
  • M. Amjad et al., “Numerical investigation of double diffusion heat flux model in Williamson nanofluid over an exponentially stretching surface with variable thermal conductivity,” Case Stud. Therm. Eng., vol. 36, pp. 102231, 2022. DOI: 10.1016/j.csite.2022.102231.
  • M. Amjad et al., “Numerical solution of magnetized Williamson nanofluid flow over an exponentially stretching permeable surface with temperature dependent viscosity and thermal conductivity,” Nanomaterials, vol. 12, pp. 3661, 2022.
  • K. Ahmed et al., “Effective similarity variables for the computations of MHD flow of Williamson nanofluid over a non-linear stretching surface,” Processes, vol. 10, pp. 1119, 2022.
  • T. Akbar et al., “Physical characteristics of Dufour and Soret effects on MHD mixed convection flow of Williamson fluid past a nonlinear stretching porous curved surface,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2021.2023233.
  • T. A. Yusuf et al., “Entropy generation in MHD Williamson nanofluid over a convectively heated stretching plate with chemical reaction,” J. Heat Transf., vol. 49, no. 4, pp. 1982–1999, 2020. DOI: 10.1002/htj.21703.
  • P. Ramachandran et al., “PySPH: A Python-based framework for smoothed particle hydrodynamics,” ACM Trans. Math. Softw. (TOMS), vol. 47, no. 4, pp. 1–38, 2021. DOI: 10.1145/3460773.
  • R.R. Huilgol and N. Phan-Thien, Eds., “Computational viscoelastic fluid dynamics,” in Rheology Series, vol. 6. New York: Elsevier, 1997, pp. 397–472.
  • G. A. Adem and N. Kishan, “Slip Effects in a flow and heat transfer of a nanofluid over a nonlinearly stretching sheet using optimal homotopy Asymptotic Method,” Int. J. Eng. Manuf. Sci., vol. 8, pp. 2249–3115, 2018.
  • A. Arikoglu et al., “Effect of slip on the entropy generation from a single rotating disk,” J. Fluids Eng., vol. 130, no. 10, pp. 101202, 2008. DOI: 10.1115/1.2953301.
  • M. I. Khan et al., “Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation,” Chin. J. Chem. Eng., vol. 31, pp. 17–25, 2021. DOI: 10.1016/j.cjche.2020.08.005.
  • M. Ramzan et al., “Upshot of heterogeneous catalysis in a nanofluid flow over a rotating disk with slip effects and Entropy optimization analysis,” Sci. Rep., vol. 11, no. 1, pp. 120, 2021. DOI: 10.1038/s41598-020-80553-1.
  • P. M. Patil et al., “Influence of partial slip flow and thermal jump on mixed convection from an exponentially stretching surface,” Int. J. Numer. Method. Heat Fluid Flow, vol. 28, no. 10, pp. 2324–2341, 2018. DOI: 10.1108/HFF-10-2017-0396.
  • M. Patil and A. Datta, “Three-dimensional aeromechanical analysis of lift-offset coaxial rotors,” presented at the AIAA SciTech 2022 Forum, AIAA Paper 2022-0928, San Diego, California, Jan. 2022. DOI: 10.2514/6.2022-0928.
  • M. Patil and A. Datta, “Time-parallel trim solution of helicopter rotors with large-scale 3D structures,” presented at the AIAA SciTech 2021 Forum, AIAA Paper 2021-1079, San Diego, California, Virtual, Jan. 2021. DOI: 10.2514/6.2021-1079.
  • M. Patil and A. Datta, “A scalable time-parallel solution of periodic rotor dynamics in X3D,” J. Am. Helicopter Soc., vol. 66, no. 4, pp. 1–16, 2021. DOI: 10.4050/JAHS.66.042007.
  • M. Patil et al., “An integrated three-dimensional aeromechanical analysis of lift-offset coaxial rotors,” presented at the 78th Vertical Flight Society Forum, Fort Worth, Texas, May 2022, DOI: 10.4050/F-0078-2022-17518.
  • L. Howarth, “CXXIX. Note on the boundary layer on a rotating sphere,” Philos. Mag., vol. 42, no. 334, pp. 1308–1315, 1951. DOI: 10.1080/14786444108561386.
  • D. Anilkumar and S. Roy, “Self – Similar solution of the unsteady mixed convection flow in the stagnation point region of a rotating sphere,” Heat Mass Transf., vol. 40, no. 67, pp. 487–493, 2004. DOI: 10.1007/s00231-003-0447-7.
  • H. S. Takhar and G. Nath, “Self-similar solution of the unsteady flow in the stagnation point region of a rotating sphere with a magnetic field,” Heat Mass Transf., vol. 36, no. 2, pp. 89–96, 2000. DOI: 10.1007/s002310050369.
  • S. Roy and P. Saikrishnan, “Non-uniform slot injection (suction) into steady laminar water boundary layer flow over a rotating sphere,” Int. J. Heat Mass Transf., vol. 46, no. 18, pp. 3389–3396, 2003. DOI: 10.1016/S0017-9310(03)00137-6.
  • S. A. W. Calabretto and J. P. Denier, “Transition in the flow due to a rotating sphere: Simulating isolated roughness,” Phys. Fluids, vol. 32, no. 7, pp. 074108, 2020. DOI: 10.1063/5.0012795.
  • G. K. Ramesh et al., “Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition,” Alex. Eng. J., vol. 64, pp. 969–979, 2023. DOI: 10.1016/j.aej.2022.09.026.
  • N. Nagendra et al., “Slip effects on MHD flow of a Williamson fluid from an isothermal sphere: A numerical study,” AMSE J., vol. 86, no. 3, pp. 782–807, 2018.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” ASME J. Heat Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • T. H. Zhao et al., “Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks,” Math. Methods Appl. Sci., vol. 46, no. 3, pp. 3012–3030, 2023. DOI: 10.1002/mma.7310.
  • Y. M. Chu et al., “Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 13977–13987, 2020. DOI: 10.1016/j.jmrt.2020.09.101.
  • P. I. Xiong et al., “Entropy optimized Darcy-Forchheimer flow of Reiner-Philippoff fluid with chemical reaction,” Comput. Theor. Chem., vol. 1200, pp. 113222, 2021. DOI: 10.1016/j.comptc.2021.113222.
  • D. D. Gray and A. Giorgini, “The validity of Boussinesq approximation for liquids and gases,” Int. J. Heat Mass Transf., vol. 19, no. 5, pp. 545–551, 1976. DOI: 10.1016/0017-9310(76)90168-X.
  • H. Schlichting and K. Gersten, Boundary Layer Theory. New York: Springer, 2000.
  • P. M. Patil and S. Benawadi, “The mixed convection flow of a Williamson nanoliquid over a rotating sphere with the aspects of activation energy,” Int. J. Model. Simul., 2022. DOI: 10.1080/02286203.2022.2151965.
  • P. M. Patil et al., “Chemical reaction effects on unsteady mixed convection boundary layer flow past a permeable slender vertical cylinder due to a nonlinearly stretching velocity,” Chem. Eng. Commun., vol. 200, no. 3, pp. 398–417, 2013. DOI: 10.1080/00986445.2012.712578.
  • A. S. Jenifer et al., “Unsteady MHD mixed convection flow of water over a sphere with mass transfer,” J. Appl. Comput. Mech., vol. 7, no. 2, pp. 935–943, 2021.
  • R. J. Radbill and A. G. McCue, Quasilinearization and Nonlinear Problems in Fluid and Orbital Mechanics. New York: Elsevier Publishing Co., 1970.
  • P. M. Patil and S. Roy, “Unsteady mixed convection flow from a moving vertical plate in a parallel free stream: Influence of heat generation or absorption,” Int. J. Heat Mass Transf., vol. 53, no. 2122, pp. 4749–4756, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.017.
  • R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems. New York: Elsevier Publishing Co., 1965.
  • P. M. Patil et al., “Non-similar solutions of mixed convection flow from an exponentially stretching surface,” Ain Shams Eng. J., vol. 8, no. 4, pp. 697–705, 2017. DOI: 10.1016/j.asej.2015.10.012.
  • P. M. Patil and B. Goudar, “Entropy generation analysis from the time-dependent quadratic combined convective flow with multiple diffusions and nonlinear thermal radiation,” Chin. J. Chem. Eng., vol. 53, pp. 46–55, 2023. DOI: 10.1016/j.cjche.2022.01.013.
  • P. M. Patil et al., “Thermal diffusion and diffusion-thermo effects on mixed convection from an exponentially impermeable stretching surface,” Int. J. Heat Mass Transf., vol. 100, pp. 482–489, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.054.
  • K. Inouye and A. Tate, “Finite difference version of Quasilinearization applied to boundary layer equations,” AIAA J., vol. 12, pp. 558–560, 1974.
  • P. M. Patil and M. Kulkarni, “Analysis of MHD mixed convection in a Ag-TiO2 hybrid nanofluid flow past a slender cylinder,” Chin. J. Phys., vol. 73, pp. 406–419, 2021. DOI: 10.1016/j.cjph.2021.07.030.
  • P. M. Patil and B. Goudar, “Time-dependent mixed convection flow of Ag–MgO/water hybrid nanofluid over a moving vertical cone with rough surface,” J. Therm. Anal. Calorim., vol. 147, no. 19, pp. 10693–10705, 2022. DOI: 10.1007/s10973-022-11246-2.
  • P. M. Patil and B. Goudar, “Influence of activation energy on triple diffusive entropy optimized time-dependent quadratic mixed convective magnetized flow,” J. Taibah Univ. Sci., vol. 16, no. 1, pp. 689–702, 2022. DOI: 10.1080/16583655.2022.2104088.
  • R. S. Varga, Matrix Iterative Analysis. Heidelberg: Springer, 2000, pp. 219–223.
  • R. Nazar et al., “Mixed convection boundary layer flow about an isothermal sphere in a micropolar fluid,” Int. J. Therm. Sci., vol. 42, no. 3, pp. 283–293, 2003. DOI: 10.1016/S1290-0729(02)00027-3.
  • M. K. A. Mohamed et al., “Viscous dissipation effect on the mixed convection boundary layer flow towards solid sphere,” Trans. Sci. Technol., vol. 3, no. 1–2, pp. 59–67, 2016.
  • M. Benkhedda et al., “Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid nanofluid in a heated horizontal annulus,” Heat Mass Transf., vol. 54, no. 9, pp. 2799–2814, 2018. DOI: 10.1007/s00231-018-2302-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.