Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 10
84
Views
0
CrossRef citations to date
0
Altmetric
Articles

Buoyancy flow of nanohybrid fluid over a rotating sphere imperiled to convective and viscous heating

ORCID Icon, & ORCID Icon
Pages 1238-1255 | Received 10 Jan 2023, Accepted 22 Jan 2023, Published online: 16 Mar 2023

References

  • D. Anilkumar and S. Roy, “Self-similar solution of the unsteady mixed convection flow in the stagnation point region of a rotating sphere,” Heat Mass Transf., vol. 40, no. 67, pp. 487–493, May 2004. DOI: 10.1007/s00231-003-0447-7.
  • M. Turkyimazoglu, “Radially expanding/contacting and rotating sphere with suction,” Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 11, pp. 3439–3451, Oct. 2022. DOI: 10.1108/HFF-01-2022-0011.
  • D. Liu, H. L. Han, and Y. L. Zheng, “A high-order method for simulating convective planar Poiseuille flow over a heated rotating sphere,” Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 8, pp. 1892–1929, Oct. 2018. DOI: 10.1108/HFF-12-2017-0525.
  • P. Rana, S. Gupta, and G. Gupta, “Unsteady nonlinear thermal convection flow of MWCNT-MgO/EG hybrid nanofluid in the stagnation-point region of a rotating sphere with quadratic thermal radiation: RSM for optimization,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106025, May 2022. DOI: 10.1016/j.icheatmasstrasfer.2022.106025.
  • B. Sahoo, S. Sarkar, R. Sivakumar, and T. V. S. Sekhar, “The effect of rotating fluid with Taylor column on forced convection heat transfer,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106222, Oct. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106222.
  • N. Acharya, F. Mabood, and I. A. Badruddin, “Thermal performance of unsteady mixed convective Ag/MgO nanohybrid flow near the stagnation point domain of a spinning sphere,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106019, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106019.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Fluids Eng. Div., vol. 213, pp. 99–101, Oct. 1995.
  • S. Dutta, S. Bhattacharyya, and I. Pop, “Two-phase model for mixed convection and flow enhancement of a nanofluid in an inclined channel patterned with heated slip stripes,” Int. J. Numer. Methods Heat Fluid Flow, vol. 31, no. 9, pp. 3047–3070, Aug. 2021. DOI: 10.1108/HFF-11-2020-0718.
  • C. J. Ho, J. K. Peng, T. F. Yang, S. Rashidi, and W. M. Yan, “On the assessment of the thermal performance of microchannel heat sink with nanofluid,” Int. J. Heat Mass Transf., vol. 201, pp. 123572, Feb. 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123572.
  • T. Ouyang, B. Liu, C. Wang, J. Ye, and S. Liu, “Novel hybrid thermal management system for preventing Li-ion battery thermal runaway using nanofluids cooling,” Int. J. Heat Mass Transf., vol. 201, pp. 123652, Feb. 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123652.
  • J. Cheng, H. Xu, Z. Tang, and P. Zhou, “Multi-objective optimization of manifold microchannel heat sink with corrugated bottom impacted by nanofluid jet,” Int. J. Heat Mass Transf., vol. 201, pp. 123634, Feb. 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123634.
  • F. Liang, X. Wei, J. Lu, J. Ding, and S. Liu, “Interplay between interfacial layer and nanoparticle dispersion in molten salt nanofluid: Collective effects on thermophysical property enhancement revealed by molecular dynamics simulations,” Int. J. Heat Mass Transf., vol. 196, pp. 123305, Nov. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123305.
  • S. Sivasankaran, T. Chandrapushpam, M. Bhuvaneswari, S. Karthikeyan, and A. K. Alzahrani, “Effect of chemical reaction on double diffusive MHD squeezing copper water nanofluid flow between parallel plates,” J. Mol. Liq., vol. 368, pp. 120768, Dec. 2022. DOI: 10.1016/j.molliq.2022.120768.
  • S. Dutta, S. Bhattacharyya, and I. Pop, “Heat transfer enhancement compared to entropy generation by imposing magnetic field and hybrid nanoparticles in mixed convection of a Bingham plastic fluid in a ventilated enclosure,” Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 9, pp. 3007–3038, Jul. 2022. DOI: 10.1108/HFF-09-2021-0623.
  • M. M. Rahman, Z. Saghir, and I. Pop, “Free convective heat transfer efficiency in Al2O3−Cu/water hybrid nanofluid inside a rectotrapezoidal enclosure,” Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 1, pp. 196–218, Jan. 2022. DOI: 10.1108/HFF-11-2020-0748.
  • A. Ahmed, H. Xu, Y. Zhou, and Q. Yu, “Modelling convective transport of hybrid nanofluid in a lid driven square cavity with consideration of Brownian diffusion and thermophoresis,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106226, Oct. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106226.
  • M. L. Keerthi, B. J. Gireesha, and G. Sowmya, “Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106341, Nov. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106341.
  • S. A. A. Shah and A. U. Awan, “Significance of magnetized Darcy-Forchheimer stratified rotating Williamson hybrid nanofluid flow: A case of 3D sheet,” Int. Commun. Heat Mass Transf., vol. 136, pp. 106214, Jul. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106214.
  • H. Babar, H. Wu, H. M. Ali, T. R. Shah, and W. Zhang, “Staggered oriented airfoil shaped pin-fin heat sink: Investigating the efficacy of novel water based ferric oxide-silica hybrid nanofluid,” Int. J. Heat Mass Transf., vol. 194, pp. 123085, Sept. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123085.
  • F. R. Siddiqui, C. Y. Tso, S. C. Fu, H. H. Qiu, and C. Y. H. Chao, “Droplet evaporation and boiling for different mixing ratios of the silver-graphene hybrid nanofluid over heated surfaces,” Int. J. Heat Mass Transf., vol. 180, pp. 121786, Dec. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121786.
  • H. Hanif, I. Khan, and S. Shafie, “A novel study on time-dependent viscosity model of magneto-hybrid nanofluid flow over a permeable cone: Applications in material engineering,” Eur. Phys. J. Plus, vol. 135, pp. 730, Sept. 2020. DOI: 10.1140/epjp/s13360-020-00724-x.
  • M. Benkhedda, T. Boufendi, T. Tayebi, and A. J. Chamkha, “Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect,” J. Therm. Anal. Calorim., vol. 140, pp. 411–425, Sept. 2020. DOI: 10.1007/s10973-019-08836-y.
  • A. S. Nejad, M. F. Barzoki, M. Rahmani, A. Kasaeian, and A. Hajinezhad, “Simulation of the heat transfer performance of Al2O3−Cu/water binary nanofluid in a homogenous copper metal foam,” J. Therm. Anal. Calorim., vol. 147, pp. 12495–12512, Jul. 2022. DOI: 10.1007/s10973-022-11487-1.
  • A. Alsubie, “Boundary layer Darcy-Forchheimer couple stress hybrid nanofluid flow over a quadratic stretching surface due to nonlinear thermal radiation,” J. Taibah Univ. Sci., vol. 15, no. 1, pp. 1188–1195, Dec. 2021. DOI: 10.1080/16583655.2021.2024409.
  • A. K. Pandey, H. Upreti, N. Joshi, and Z. Uddin, “Effect of natural convection on 3D MHD flow of MoS2–GO/H2O via porous surface due to multiple slip mechanisms,” J. Taibah Univ. Sci., vol. 16, no. 1, pp. 749–762, Aug. 2022. DOI: 10.1080/16583655.2022.2113729.
  • H. A. Mohammed, H. B. Vuthaluru, and S. Liu, “Heat transfer augmentation of parabolic trough solar collector receiver’s tube using hybrid nanofluids and conical turbulators,” J. Taiwan Inst. Chem. Eng., vol. 125, pp. 215–242, Aug. 2021. DOI: 10.1016/j.jtice.2021.06.032.
  • S. Sarvar-Ardeh, R. Rafee, and S. Rashidi, “Hybrid nanofluids with temperature-dependent properties for use in double-layered microchannel heat sink: Hydrothermal investigation,” J. Taiwan Inst. Chem. Eng., vol. 124, pp. 53–62, Jul. 2021. DOI: 10.1016/j.jtice.2021.05.007.
  • A. A. A. A. Al-Rashed, A. A. Alnaqi, and J. Alsarraf, “Thermo-hydraulic and economic performance of a parabolic trough solar collector equipped with finned rod turbulator and filled with oil-based hybrid nanofluid,” J. Taiwan Inst. Chem. Eng., vol. 124, pp. 192–204, Jul. 2021. DOI: 10.1016/j.jtice.2021.04.026.
  • H. Waqas et al., “Heat transfer analysis of hybrid nanofluid flow with thermal radiation through a stretching sheet: A comparative study,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106303, Nov. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106303.
  • P. Rana and A. Kumar, “Nonlinear buoyancy driven flow of hybrid nanoliquid past a spinning cylinder with quadratic thermal radiation,” Int. Commun. Heat Mass Transf., vol. 139, pp. 106439, Dec. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106439.
  • M. Hussain, U. Farooq, and M. Sheremet, “Nonsimilar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106230, Oct. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106230.
  • D. Khan, P. Kumam, W. Watthayu, and I. Khan, “Heat transfer enhancement and entropy generation of two working fluids of MHD flow with titanium alloy nanoparticle in Darcy medium,” J. Therm. Anal. Calorim., vol. 147, pp. 10815–10826, Mar. 2022. DOI: 10.1007/s10973-022-11284-w.
  • T. Anusha, H. N. Huang, and U. S. Mahabaleshwar, “Two dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation,” J. Taiwan Inst. Chem. Eng., vol. 127, pp. 79–91, Oct. 2021. DOI: 10.1016/j.jtice.2021.08.014.
  • C. G. N. Ketchate, P. T. Kapen, D. Fokwa, and G. Tchuen, “Stability analysis of mixed convection in a porous horizontal channel filled with a Newtonian Al2O3/water nanofluid in presence of magnetic field and thermal radiation,” Chin. J. Phys., vol. 79, pp. 514–530, Oct. 2022. DOI: 10.1016/j.cjph.2022.08.024.
  • A. Jaafar, I. Waini, A. Jamaludin, R. Nazar, and I. Pop, “MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction,” Chin. J. Phys., vol. 79, pp. 13–27, Oct. 2022. DOI: 10.1016/j.cjph.2022.06.026.
  • M. S. Kausar, A. Hussanan, M. Waqas, and M. Mamat, “Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation,” Chin. J. Phys., vol. 78, pp. 435–452, Aug. 2022. DOI: 10.1016/j.cjph.2022.06.027.
  • P. M. Patil and M. Kulkarni, “Effects of surface roughness and thermal radiation on mixed convective (GO-MoS2/H2O-C2H6O2) hybrid nanofluid flow past a permeable cone,” Indian J. Phys., vol. 96, pp. 3567–3578, Feb. 2022. DOI: 10.1007/s12648-022-02287-2.
  • P. Jalili, K. Kazerani, B. Jalili, and D. D. Ganji, “Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles,” Case Stud. Therm. Eng., vol. 36, pp. 102209, Aug. 2022. DOI: 10.1016/j.csite.2022.102209.
  • B. Jalili, P. Jalili, S. Sadighi, and D. D. Ganji, “Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity,” Chin. J. Phys., vol. 71, pp. 136–150, Jun. 2021. DOI: 10.1016/j.cjph.2020.02.034.
  • B. Jalili, S. Sadighi, P. Jalili, and D. D. Ganji, “Characteristics of ferrofluid flow over a stretching sheet with suction and injection,” Case Stud. Therm. Eng., vol. 14, pp. 100470, Sept. 2019. DOI: 10.1016/j.csite.2019.100470.
  • B. Jalili, A. Mousavi, P. Jalili, A. Shateri, and D. D. Ganji, “Thermal analysis of fluid flow with heat generation for different logarithmic surfaces,” Int. J. Eng. Transf., vol. 35, no. 12, pp. 2291–2296, Dec. 2022. DOI: 10.5829/ije.2022.35.12c.03.
  • P. Jalili, A. A. Azar, B. Jalili, Z. Asadi, and D. D. Ganji, “Heat transfer analysis in cylindrical polar system with magnetic field: A novel hybrid analytical and numerical technique,” Case Stud. Therm. Eng., vol. 40, pp. 102524, Dec. 2022. DOI: 10.1016/j.csite.2022.102524.
  • P. Jalili, H. Narimisa, B. Jalili, A. Shateri, and D. D. Ganji, “A novel analytical approach to micro-polar nanofluid thermal analysis in the presence of thermophoresis, Brownian motion and Hall currents,” Soft Comput., vol. 27, pp. 677–689, Jan. 2023. DOI: 10.1007/s00500-022-07643-2.
  • B. Jalili, A. D. Ganji, P. Jalili, S. S. Naurazar, and D. D. Ganji, “Thermal analysis of Williamson fluid flow with Lorentz force on the stretching plate,” Case Stud. Therm. Eng., vol. 39, pp. 102374, Nov. 2022. DOI: 10.1016/j.csite.2022.102374.
  • B. Jalili, P. Jalili, A. Shateri, and D. D. Ganji, “Rigid plate submerged in a Newtonian fluid and fractional differential equation problems via Caputo fractional derivative,” Partial Differ. Equ. Appl. Math., vol. 6, pp. 100452, Dec. 2022. DOI: 10.1016/j.padiff.2022.100452.
  • P. Jalili, B. Jalili, A. Shateri, and D. D. Ganji, “A novel fractional analytical technique for the time-space fractional equations appearing in oil pollution,” Int. J. Eng. Transf., vol. 35, no. 12, pp. 2386–2394, Dec. 2022. DOI: 10.5829/ije.2022.35.12c.15.
  • M. Yasir and M. Khan, “Comparative analysis for radiative flow of Cu-Ag/blood and Cu/blood nanofluid through porous medium,” J. Pet. Sci. Eng., vol. 215, pp. 110650, Aug. 2022. DOI: 10.1016/j.petrol.2022.110650.
  • M. Yasir, A. Ahmed, and M. Khan, “Carbon nanotubes based fluid flow past a moving thin needle examine through dual solutions: Stability analysis,” J. Energy Storage, vol. 48, pp. 103913, Apr. 2022. DOI: 10.1016/j.est.2021.103913.
  • M. Yasir, M. Khan, M. Sarfraz, D. Abuzaid, and M. Z. Ullah, “Exploration of the dynamics of ethylene glycol conveying copper and titania nanoparticles on a stretching/shrinking curved object: Stability analysis,” Int. Commun. Heat Mass Transf., vol. 137, pp. 110990, Oct. 2022. DOI: 10.1016/j.cheatmasstransfer.2022.106225.
  • M. Yasir, M. Sarfraz, M. Khan, A. K. Alzahrani, and M. Z. Ullah, “Estimation of dual branch solutions for Homann flow of hybrid nanofluid towards biaxial shrinking surface,” J. Pet. Sci. Eng., vol. 218, pp. 110990, Nov. 2022. DOI: 10.1016/j.petrol.2022.110990.
  • M. Yasir, Z. U. Malik, A. K. Alzahrani, and M. Khan, “Study of hybrid Al2O3-Cu nanomaterials on radiative flow over a stretching/shrinking cylinder: Comparative analysis,” Ain Shams Eng. J., pp. 102070, 2022. DOI: 10.1016/j.asej.2022.102070.
  • M. Yasir, M. Khan, and Z. U. Malik, “Analysis of thermophoretic particle deposition with Soret-Dufour in a fluid exhibit relaxation/retardation times effect,” Int. Commun. Heat Mass Transf., vol. 141, pp. 106577, Feb. 2023. DOI: 10.1016/j.cheatmasstransfer.2022.106577.
  • M. Yasir, A. Hafeez, and M. Khan, “Thermal conductivity performance in hybrid (SWCNTs-CuO/Ehylene glycol) nanofluid flow: Dual solutions,” Ain Shams Eng. J., vol. 13, pp. 101703, Sept. 2022. DOI: 10.1016/j.asej.2022.101703.
  • A. Dawar and N. Acharya, “Unsteady mixed convective radiative nanofluid flow in the stagnation point region of a revolving sphere considering the influence of nanoparticles diameter and nanolayer,” J. Indian Chem. Soc., vol. 99, no. 10, pp. 100716, Oct. 2022. DOI: 10.1016/j.jics.2022.100716.
  • N. Acharya, S. Maity, and P. K. Kundu, “Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery spinning disk,” Proc. Inst. Mech. Eng. Part C, vol. 236, no. 11, pp. 6007–6024, Jan. 2022. DOI: 10.1177/09544062211065384.
  • N. Acharya, “Spectral quasi linearization simulation on the radiative nanofluid spraying over a permeable inclined spinning disk considering the existence of heat source/sink,” Appl. Math. Comput., vol. 411, pp. 126547, Dec. 2021. DOI: 10.1016/j.amc.2021.126547.
  • N. Acharya, “Spectral quasi linearization simulation of radiative nanofluidic transport over a bended surface considering the effects of multiple convective conditions,” Eur. J. Mech. B Fluids, vol. 84, pp. 139–154, Dec. 2020. DOI: 10.1016/j.euromechflu.2020.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.