Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 10
128
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of the operational conditions on the transient charging performance of a thermal storage system using supercritical carbon dioxide

, &
Pages 1256-1272 | Received 24 Aug 2022, Accepted 26 Jan 2023, Published online: 27 Mar 2023

References

  • M. Liu et al., “Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies,” Renew. Sustain. Energy Rev., vol. 53, pp. 1411–1432, 2016. DOI: 10.1016/j.rser.2015.09.026.
  • H. Mahon, D. O'Connor, D. Friedrich, and B. Hughes, “A review of thermal energy storage technologies for seasonal loops,” Energy, vol. 239, pp. 122207, 2022. DOI: 10.1016/j.energy.2021.122207.
  • J. Kotowicz and W. Uchman, “Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage,” Energy, vol. 227, pp. 120469, 2021. DOI: 10.1016/j.energy.2021.120469.
  • C.-C. Cormos, “Techno-economic implications of flexible operation for super-critical power plants equipped with calcium looping cycle as a thermo-chemical energy storage system,” Fuel, vol. 280, pp. 118293, 2020. DOI: 10.1016/j.fuel.2020.118293.
  • A. Emrani, A. Berrada, A. Arechkik, and M. Bakhouya, “Improved techno-economic optimization of an off-grid hybrid solar/wind/gravity energy storage system based on performance indicators,” J. Energy Storage, vol. 49, pp. 104163, 2022. DOI: 10.1016/j.est.2022.104163.
  • F. G. Battisti, L. A. de Araujo Passos, and A. K. da Silva, “Performance mapping of packed-bed thermal energy storage systems for concentrating solar-powered plants using supercritical carbon dioxide,” Appl. Therm. Eng., vol. 183, pp. 116032, 2021. DOI: 10.1016/j.applthermaleng.2020.116032.
  • E. Alptekin and M. A. Ezan, “Performance investigations on a sensible heat thermal energy storage tank with a solar collector under variable climatic conditions,” Appl. Therm. Eng., vol. 164, pp. 114423, 2020. DOI: 10.1016/j.applthermaleng.2019.114423.
  • E. Fleming, S. Wen, L. Shi, and A. K. da Silva, “Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit,” Int. J. Heat Mass Transf., vol. 82, pp. 273–281, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.022.
  • C. Liu and D. Groulx, “Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system,” Int. J. Therm. Sci., vol. 82, pp. 100–110, 2014. DOI: 10.1016/j.ijthermalsci.2014.03.014.
  • G. Alva, Y. Lin, and G. Fang, “An overview of thermal energy storage systems,” Energy, vol. 144, pp. 341–378, 2018. DOI: 10.1016/j.energy.2017.12.037.
  • A. Gil et al., “State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 31–55, 2010. DOI: 10.1016/j.rser.2009.07.035.
  • L. A. Tse, G. B. Ganapathi, R. E. Wirz, and A. S. Lavine, “Spatial and temporal modeling of sub- and supercritical thermal energy storage,” Solar Energy, vol. 103, pp. 402–410, 2014. DOI: 10.1016/j.solener.2014.02.040.
  • G. M. Hobold and A. K. da Silva, “Critical phenomena and their effect on thermal energy storage in supercritical fluids,” Appl. Energy, vol. 205, pp. 1447–1458, 2017. DOI: 10.1016/j.apenergy.2017.09.081.
  • T. Esence et al., “A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems,” Sol. Energy, vol. 153, pp. 628–654, 2017. DOI: 10.1016/j.solener.2017.03.032.
  • S. Singh et al., “Investigation on transient performance of a large-scale packed-bed thermal energy storage,” Appl. Energy, vol. 239, pp. 1114–1129, 2019. DOI: 10.1016/j.apenergy.2019.01.260.
  • A. Palacios, C. Barreneche, M. E. Navarro, and Y. Ding, “Thermal energy storage technologies for concentrated solar power – A review from a materials perspective,” Renew. Energy, vol. 156, pp. 1244–1265, 2020. DOI: 10.1016/j.renene.2019.10.127.
  • I. Camacho et al., “On the anticorrosion mechanism of molten salts based nanofluids,” Sol. Energy Mater. Sol. Cells, vol. 234, pp. 111424, 2022. DOI: 10.1016/j.solmat.2021.111424.
  • M. Liu, W. Saman, and F. Bruno, “Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2118–2132, 2012. DOI: 10.1016/j.rser.2012.01.020.
  • G. M. Hobold and A. K. da Silva, “Enabling high conductance and high energy density in supercritical fluids for thermal storage applications,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 10, pp. 529, 2020. DOI: 10.1007/s40430-020-02573-2.
  • V. Dostal, M. J. Driscoll, and P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Massachussets, USA: MIT - ANP - TR-100, 2004.
  • J. J. Dyreby, “Modeling the supercritical carbon dioxide Brayton cycle with recompression,” PhD dissertation, Mechanical Engineering, University of Wisconsin-Madison, Ann Arbor, MI, 2014.
  • L. A. de Araujo Passos, S. L. de Abreu, and A. K. da Silva, “A short- and long-term demand based analysis of a CO2 concentrated solar power system with backup heating,” Appl. Therm. Eng., vol. 160, pp. 114003, 2019. DOI: 10.1016/j.applthermaleng.2019.114003.
  • E. Johnson et al., “Thermal energy storage with supercritical carbon dioxide in a packed bed: Modeling charge-discharge cycles,” J. Supercrit. Fluids, vol. 137, pp. 57–65, 2018. DOI: 10.1016/j.supflu.2018.03.009.
  • G. B. Ganapathi and R. Wirz, “High density thermal energy storage with supercritical fluids,” presented at ASME 2012 6th International Conference on Energy Sustainability, San Diego, California, USA, no. ES2012-91008, pp. 699–707, 2012. DOI: 10.1115/ES2012-91008.
  • R. B. Lakeh et al., “Effect of laminar and turbulent buoyancy-driven flows on thermal energy storage using supercritical fluids,” Numer. Heat Transf. A: Appl., vol. 64, no. 12, pp. 955–973, 2013. DOI: 10.1080/10407782.2013.811349.
  • R. B. Lakeh, A. S. Lavine, H. P. Kavehpour, and R. E. Wirz, “Study of turbulent natural convection in vertical storage tubes for supercritical thermal energy storage,” Numer. Heat Transf. A: Appl., vol. 67, no. 2, pp. 119–139, 2015. DOI: 10.1080/10407782.2014.923224.
  • R. B. Lakeh, R. E. Wirz, P. Kavehpour, and A. S. Lavine, “A Dimensionless model for transient turbulent natural convection in isochoric vertical thermal energy storage tubes,” J. Therm. Sci. Eng. Appl., vol. 10, no. 3, pp. 034501, 2018. DOI: 10.1115/1.4038587.
  • T. D. Luz, F. G. Battisti, and A. K. da Silva, “A numerical study of supercritical carbon dioxide as a medium for thermal energy storage applications under natural convection,” Numer. Heat Transf. A: Appl., vol. 81, no. 36, pp. 49–71, 2022. DOI: 10.1080/10407782.2021.1969812.
  • G. B. Ganapathi et al., “A 5 kWht lab-scale demonstration of a novel thermal energy storage concept with supercritical fluids,” presented at the ASME 2013 7th International Conference on Energy Sustainability, Minneapolis, Minnesota, USA, 2013. DOI: 10.1115/ES2013-18182.
  • L. Xu et al., “Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition,” Proc. Natl. Acad. Sci. USA, vol. 102, no. 46, pp. 16558–16562, 2005. DOI: 10.1073/pnas.0507870102.
  • G. M. Hobold and A. K. da Silva, “Dimensionless, fluid-independent equations for heat and momentum transfer in supercritical fluids,” J. Supercrit. Fluids, vol. 133, no. Part 1, pp. 17–29, 2018. DOI: 10.1016/j.supflu.2017.09.016.
  • R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics. New York, NY: Dover Publications, Inc., 1962.
  • B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, 1974. DOI: 10.1016/0045-7825(74)90029-2.
  • V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbulence. I. Basic theory,” J. Sci. Comput., vol. 1, no. 1, pp. 3–51, 1986. DOI: 10.1007/BF01061452.
  • T.-H. Shih et al., “A new k-ϵ eddy viscosity model for high reynolds number turbulent flows,” Comput. Fluids, vol. 24, no. 3, pp. 227–238, 1995. DOI: 10.1016/0045-7930(94)00032-T.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • R. B. Lakeh et al., “Effect of natural convection on thermal energy storage in supercritical fluids,” presented at the ASME 2013 7th International Conference on Energy Sustainability, Minneapolis, Minnesota, USA, 2013. DOI: 10.1115/ES2013-18079.
  • K. Wang et al., “Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes,” J. Supercrit. Fluids, vol. 99, pp. 112–120, 2015. DOI: 10.1016/j.supflu.2015.02.001.
  • J. Wang et al., “Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube,” Energy Convers. Manag., vol. 157, pp. 536–548, 2018. DOI: 10.1016/j.enconman.2017.12.046.
  • S.-H. Liu, Y.-P. Huang, J.-F. Wang, and L. K. H. Leung, “Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures,” Int. J. Heat Mass Transfer, vol. 117, pp. 595–606, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.037.
  • ANSYS, Fluent User’s Guide, Release 18.2. Canonsburg, PA: ANSYS, Inc., 2018.
  • C. R. Maliska, Transferência de Calor e Mecânica Dos Fluidos Computacional, 2nd ed., Sao Paulo: LTC Editora, 2004.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., New York: Wiley, 2011.
  • G. G. Simeoni et al., “The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids,” Nat. Phys., vol. 6, no. 7, pp. 503–507, 2010. DOI: 10.1038/nphys1683.
  • R. Tian, Q. An, H. Zhai, and L. Shi, “Performance analyses of transcritical organic Rankine cycles with large variations of the thermophysical properties in the pseudocritical region,” Appl. Therm. Eng., vol. 101, pp. 183–190, 2016. DOI: 10.1016/j.applthermaleng.2016.02.126.
  • G. R. Warrier, Y. Rousselet, and K. Dhir, “Natural convection from horizontal cylinders at near-critical pressures—Part II: Numerical simulations,” J. Heat Transfer, vol. 135, no. 2, pp. 022502, 2013. DOI: 10.1115/1.4007673.
  • L. B. Evans, R. C. Reid, and E. M. Drake, “Transient natural convection in a vertical cylinder,” AIChE J., vol. 14, no. 2, pp. 251–259, 1968. DOI: 10.1002/aic.690140210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.