Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
303
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influences of interconnection structure on the flow and heat transfer behaviors of the hydrocarbon fuel in parallel SCRamjet regenerative cooling channels

, , , &
Pages 1273-1296 | Received 21 Oct 2022, Accepted 26 Jan 2023, Published online: 06 Mar 2023

References

  • W. Dahm, Technology Horizons: A Vision for Air Force Science and Technology during 2010-2030. Tempe, AZ, USA: Air University Press, 2010.
  • E. T. Curran, “SCRamjet engines: The first forty years,” J. Propul. Power, vol. 17, no. 6, pp. 1138–1148, May 2012. DOI: 10.2514/2.5875.
  • G. Abraham et al., “Measurements for fuel reforming for SCRamjet thermal management and combustion optimization: 2009 status of the comparer project,” presented at the Proc. 14th AIAA Int. Space Planes and Hypersonic Systems and Technol. Conf., Canberra, Australia, Nov. 6, 2009.
  • P. X. Jiang, G. Huang, Y. Zhu, Z. Liao, and Z. Huang, “Experimental investigation of combined transpiration and film cooling for sintered metal porous struts,” Int. J. Heat Mass Transf., vol. 108, pp. 232–243, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.014.
  • G. Fau, N. Gascoin, P. Gillard, M. Bouchez, and J. Steelant, “Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability,” J. Anal. Appl. Pyrolysis, vol. 95, pp. 180–188, May 2012. DOI: 10.1016/j.jaap.2012.02.005.
  • L. Taddeo et al., “Experimental study of pyrolysiscombustion coupling in a regeneratively cooled combustor: System dynamics analysis,” Aerosp. Sci. Technol., vol. 67, pp. 473–483, Mar. 2017. DOI: 10.1016/j.ast.2017.04.026.
  • L. Taddeo et al., “Dimensioning of automated regenerative cooling: Setting of high-end experiment,” Aerosp. Sci. Technol., vol. 43, pp. 350–359, Jun. 2015. DOI: 10.1016/j.ast.2015.03.015.
  • N. Gascoin, G. Abraham, and P. Gillard, “Thermal and hydraulic effects of coke deposit in hydrocarbon pyrolysis process,” J. Thermophys. Heat Transf., vol. 26, no. 1, pp. 57–65, Mar. 2012. DOI: 10.2514/1.T3778.
  • C. Zhang, J. Qin, Q. Yang, S. Zhang, and W. Bao, “Design and heat transfer characteristics analysis of combined active and passive thermal protection system for hydrogen fueled SCRamjet,” Int. J. Hydrogen Energy, vol. 40, no. 1, pp. 675–682, Jan. 2015. DOI: 10.1016/j.ijhydene.2014.11.036.
  • C. Zhang et al., “Indirect measurement method of inner wall temperature of SCRamjet with a state observer,” Acta Astronautica, vol. 115, pp. 330–337, Oct. 2015. DOI: 10.1016/j.actaastro.2015.05.030.
  • H. W. Deng et al., “Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions,” J. Chem. Eng. Data, vol. 56, no. 6, pp. 2980–2986, May 2011. DOI: 10.1021/je200258g.
  • H. W. Deng et al., “Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) k under supercritical pressure conditions,” J. Chem. Eng. Data, vol. 57, no. 2, pp. 358–365, Jan. 2012. DOI: 10.1021/je200901y.
  • H. W. Deng et al., “Isobaric specific heat capacity measurement for kerosene rp-3 in the near-critical and supercritical regions,” J. Chem. Eng. Data, vol. 57, no. 2, pp. 263–268, Dec. 2012. DOI: 10.1021/je200523a.
  • F. Zhong, X. Fan, G. Yu, J. Li, and C. Sung, “Heat transfer of aviation kerosene at supercritical conditions,” J. Thermophys. Heat Transf., vol. 23, no. 3, pp. 543–550, Jul. 2009. DOI: 10.2514/1.41619.
  • D. Huang and W. Li, “Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures,” Int. J. Heat Mass Transf., vol. 111, pp. 266–278, Aug. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.117.
  • F. Sun, Y. Li, O. Manca, and G. Xie, “An evaluation on the laminar effect of buoyancy-driven supercritical hydrocarbon fuel flow and heat transfer characteristics,” Int. J. Heat Mass Transf., vol. 142, pp. 118414, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.07.064.
  • D. Huang, Z. Wu, B. Sunden, and W. Li, “A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress,” Appl. Energy, vol. 162, pp. 494–505, Jan. 2016. DOI: 10.1016/j.apenergy.2015.10.080.
  • C. Zhang et al., “Experimental investigation on heat transfer of a specific fuel (rp-3) flows through downward tubes at supercritical pressure,” J. Supercrit. Fluids, vol. 72, pp. 90–99, Dec. 2012. DOI: 10.1016/j.supflu.2012.07.011.
  • Y. Fu, H. Huang, J. Wen, G. Xu, and W. Zhao, “Experimental investigation on convective heat transfer of supercritical rp-3 in vertical miniature tubes with various diameters,” Int. J. Heat Mass Transf., vol. 112, pp. 814–824, Sept. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.008.
  • B. Liu et al., “Experimental investigation of convection heat transfer of n-Decane at supercritical pressures in small vertical tubes,” Int. J. Heat Mass Transf., vol. 91, pp. 734–746, Dec. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.006.
  • G. Dang, F. Zhong, Y. Zhang, and X. Zhang, “Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube,” Int. J. Heat Mass Transf., vol. 85, pp. 1003–1011, Jun. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.052.
  • F. Sun, Y. Li, O. Manca, and G. Xie, “On assessment of heat transfer deterioration of a channel with supercritical n-Decane for SCRamjet engines cooling,” Int. J. Heat Mass Transf., vol. 135, pp. 782–795, Jun. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.027.
  • F. Sun, Y. Li, B. Sunden, and G. Xie, “The behavior of turbulent heat transfer deterioration in supercritical hydrocarbon fuel flow considering thermal resistance distribution,” Int. J. Therm. Sci., vol. 141, pp. 19–32, Jul. 2019. DOI: 10.1016/j.ijthermalsci.2019.03.027.
  • H. Pu et al., “Convective heat transfer and flow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel,” Exp. Therm. Fluid Sci., vol. 108, pp. 39–53, Nov. 2019. DOI: 10.1016/j.expthermflusci.2019.06.002.
  • Z. Yang, Q. Bi, Z. Liu, Y. Guo, and J. Yan, “Heat transfer to supercritical pressure hydrocarbons flowing in a horizontal short tube,” Exp. Therm. Fluid Sci., vol. 61, pp. 144–152, Feb. 2015. DOI: 10.1016/j.expthermflusci.2014.10.024.
  • S. Koshizuka, N. Takano, and Y. Oka, “Numerical analysis of deterioration phenomena in heat transfer to supercritical water,” Int. J. Heat Mass Transf., vol. 38, no. 16, pp. 3077–3084, Nov. 1995. DOI: 10.1016/0017-9310(95)00008-W.
  • D. Zhang, L. Hou, J. Liu, and M. Gao, “Surrogate models of thermally cracked hydrocarbon fuels at typical pyrolysis temperatures,” Fuel, vol. 293, no. 10, pp. 120393, Jun. 2021. DOI: 10.1016/j.fuel.2021.120393.
  • F. Li et al., “Thermal cracking of endothermic hydrocarbon fuel in regenerative cooling channels with different geometric structures,” Energy Fuels, vol. 32, no. 6, pp. 6524–6534, May 2018. DOI: 10.1021/acs.energyfuels.8b00531.
  • Y. Feng et al., “Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel,” Int. J. Heat Mass Transf., vol. 91, pp. 520–531, Dec. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.095.
  • B. Ruan, H. Meng, and V. Yang, “Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-Decane at supercritical pressures,” Int. J. Heat Mass Transf., vol. 69, pp. 455–463, Feb. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.045.
  • B. Jin, K. Jing, J. Liu, X. Zhang, and G. Liu, “Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures,” J. Anal. Appl. Pyrolysis, vol. 125, pp. 117–126, May 2017. DOI: 10.1016/j.jaap.2017.04.010.
  • K. Xu, X. Sun, and H. Meng, “Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure,” Int. J. Therm. Sci., vol. 132, pp. 209–218, Oct. 2018. DOI: 10.1016/j.ijthermalsci.2018.06.008.
  • X. Pei and L. Hou, “Secondary flow and oxidation coking deposition of aviation fuel,” Fuel, vol. 167, pp. 68–74, Mar. 2016. DOI: 10.1016/j.fuel.2015.11.054.
  • L. Y. Hou, N. Dong, Z. Y. Ren, B. Zhang, and S. L. Hu, “Cooling and coke deposition of hydrocarbon fuel with catalytic steam reforming,” Fuel Process. Technol., vol. 128, pp. 128–133, Dec. 2014. DOI: 10.1016/j.fuproc.2014.07.011.
  • L. Y. Hou, X. X. Zhang, and Z. Y. Ren, “Coke suppression of kerosene by wall catalytic steam reforming,” Fuel Process. Technol., vol. 154, pp. 117–122, Dec. 2016. DOI: 10.1016/j.fuproc.2016.08.019.
  • L. Y. Hou, D. R. Zhang, and X. X. Zhang, “Interaction between thermal cracking and steam reforming reactions of aviation kerosene,” Fuel Process. Technol., vol. 167, pp. 655–662, Dec. 2017. DOI: 10.1016/j.fuproc.2017.08.013.
  • X. Yang, S. Wang, Y. Tang, Y. He, and H. Liu, “Numerical simulation of thermal cracking and catalytic reforming in a microchannel with coke deposition,” J. Anal. Appl. Pyrolysis, vol. 160, pp. 105354, Nov. 2021. DOI: 10.1016/j.jaap.2021.105354.
  • X. Yang, S. Wang, and Y. He, “Review of catalytic reforming for hydrogen production in a membrane-assisted fluidized bed reactor,” Renew. Sustain. Energy Rev., vol. 154, pp. 111832, Feb. 2022. DOI: 10.1016/j.rser.2021.111832.
  • J. Qin et al., “Flow rate distribution of cracked hydrocarbon fuel in parallel pipes,” Fuel, vol. 161, pp. 105–112, Dec. 2015. DOI: 10.1016/j.fuel.2015.08.015.
  • Y. Fu, Z. Tao, G. Xu, H. Deng, and Z. Jia, “Experimental study of flow distribution for aviation kerosene in parallel helical tubes under supercritical pressure,” Appl. Therm. Eng., vol. 90, no. 12, pp. 102–109, Nov. 2015. DOI: 10.1016/j.applthermaleng.2015.06.082.
  • Y. Chen, Y. Wang, Z. Bao, Q. Zhang, and X. Y. Li, “Numerical investigation of flow distribution and heat transfer of hydrocarbon fuel in regenerative cooling panel,” Appl. Therm. Eng., vol. 98, pp. 628–635, Apr. 2016. DOI: 10.1016/j.applthermaleng.2015.12.088.
  • T. V. Oevelen, J. A. Weibel, and S. V. Garimella, “Predicting two-phase flow distribution and stability in systems with many parallel heated channels,” Int. J. Heat Mass Transf., vol. 107, pp. 557–571, Apr. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.050.
  • M. H. Shojaeefard, J. Zare, and S. D. Nourbakhsh, “Developing a hybrid procedure of one dimensional finite element method and CFD simulation for modeling refrigerant flow mal-distribution in parallel flow condenser,” Int. J. Refrig., vol. 73, pp. 39–53, Jan. 2017. DOI: 10.1016/j.ijrefrig.2016.09.005.
  • T. Xiong et al., “Experimental study on flow instability in parallel channels with supercritical water,” Ann. Nucl. Energy, vol. 48, pp. 60–67, Oct. 2012. DOI: 10.1016/j.anucene.2012.05.018.
  • J. Dong, X. Zhuang, X. Xu, Z. Miao, and B. Xu, “Numerical analysis of a multi-channel active cooling system for densely packed concentrating photovoltaic cells,” Energy Convers. Manage., vol. 161, pp. 172–181, Apr. 2018. DOI: 10.1016/j.enconman.2018.01.081.
  • C. C. Wang, K. S. Yang, J. S. Tsai, and I. Y. Chen, “Characteristics of flow distribution in compact parallel flow heat exchangers, part II: Modified inlet header,” Appl. Therm. Eng., vol. 31, no. 16, pp. 3235–3242, Nov. 2011. DOI: 10.1016/j.applthermaleng.2011.06.003.
  • T. Jing et al., “Flow and thermal analyses of regenerative cooling in non-uniform channels for combustion chamber,” Appl. Therm. Eng., vol. 119, pp. 89–97, Jun. 2017. DOI: 10.1016/j.applthermaleng.2017.03.062.
  • T. Jing et al., “An innovative self-adaptive method for improving heat sink utilization efficiency of hydrocarbon fuel in regenerative thermal protection system of combined cycle engine,” Energy Convers. Manage., vol. 178, pp. 369–382, Dec. 2018. DOI: 10.1016/j.enconman.2018.10.038.
  • Y. Jiang et al., “Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines,” Energy, vol. 138, pp. 1056–1068, Nov. 2017. DOI: 10.1016/j.energy.2017.07.091.
  • Y. Jiang et al., “Parametric study on the hydrocarbon fuel flow rate distribution and cooling effect in non-uniformly heated parallel cooling channels,” Int. J. Heat Mass Transf., vol. 126, pp. 267–276, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.124.
  • Y. Jiang, J. Qin, K. Chetehouna, N. Gascoin, and W. Bao, “Effect of geometry parameters on the hydrocarbon fuel flow rate distribution in pyrolysis zone of SCRamjet cooling channels,” Int. J. Heat Mass Transf., vol. 141, pp. 1114–1130, Oct. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.07.054.
  • Y. Jiang et al., “The flow rate distribution of hydrocarbon fuel in parallel channels with different cross section shapes,” Appl. Therm. Eng., vol. 137, pp. 173–183, Jun. 2018. DOI: 10.1016/j.applthermaleng.2018.03.033.
  • Y. Jiang et al., “A control method for flow rate distribution of cracked hydrocarbon fuel in parallel channels,” Appl. Therm. Eng., vol. 105, pp. 531–536, Jul. 2016. DOI: 10.1016/j.applthermaleng.2016.03.031.
  • Y. Jiang et al., “The influences of variable sectional area design on improving the hydrocarbon fuel flow distribution in parallel channels under supercritical pressure,” Fuel, vol. 233, pp. 442–453, Dec. 2018. DOI: 10.1016/j.fuel.2018.06.082.
  • Y. Chen et al., “A control method for flow distribution in fuel-cooled plate based on choked flow effect,” Appl. Therm. Eng., vol. 142, pp. 127–137, Sept. 2018. DOI: 10.1016/j.applthermaleng.2018.06.065.
  • Y. Ding, R. Anderson, L. Zhang, X. Bi, and D. P. Wilkinson, “Simulations of two-phase flow distribution in communicating parallel channels for a PEM fuel cell,” Int. J. Multiphase Flow, vol. 52, pp. 35–45, Jun. 2013. DOI: 10.1016/j.ijmultiphaseflow.2012.12.001.
  • A. M. Guzman, M. P. Beiza, A. J. Diaz, P. F. Fischer, and J. C. Ramos, “Flow and heat transfer characteristics in micro and mini communicating pressure driven channel flows by numerical simulations,” Int. J. Heat Mass Transf., vol. 58, no. 12, pp. 568–577, Mar. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.021.
  • Q. Yang, K. Chetehouna, N. Gascoin, and W. Bao, “Experimental study on combustion modes and thrust performance of a staged-combustor of the SCRamjet with dual-strut,” Acta Astronautica, vol. 122, pp. 28–34, Jun. 2016. DOI: 10.1016/j.actaastro.2016.01.002.
  • The Committee of China Aeronautical Materials Handbook, China Aeronautical Materials Handbook. Beijing, PRC: China Standard Press, 2022.
  • M. Bazargan, D. Fraser, and V. Chatoorgan, “Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube,” J. Heat Transf., vol. 127, no. 8, pp. 897–902, Aug. 2005. DOI: 10.1115/1.1929787.
  • C. Zhang, Z. Yao, J. Qin, and W. Bao, “Experimental study on measurement and calculation of heat flux in supersonic combustor of SCRamjet,” J. Therm. Sci., vol. 24, no. 3, pp. 254–259, May 2015. DOI: 10.1007/s11630-015-0781-3.
  • M. Cismondi and J. Mollerup, “Development and application of a three-parameter RK-PR equation of state,” Fluid Phase Equilib., vol. 232, no. 12, pp. 74–89, May 2005. DOI: 10.1016/j.fluid.2005.03.020.
  • D. Zhang et al., “Quasi-One-Dimensional model of SCRamjet combustor coupled with regenerative cooling,” J. Propul. Power, vol. 32, no. 3, pp. 687–697, Mar. 2016. DOI: 10.2514/1.B35887.
  • E. Lemmon, M. Huber, and M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Natl Std. Ref. Data Series. [Online]. Available: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912382. Accessed: Dec. 9, 2022.
  • Y. Zhu, B. Liu, and P. Jiang, “Experimental and numerical investigations on n-Decane thermal cracking at supercritical pressures in a vertical tube,” Energy Fuels, vol. 28, no. 1, pp. 466–474, Jun. 2014. DOI: 10.1021/ef401924s.
  • C. Wang, K. S. Yang, J. Tasi, and I. Chen, “Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header,” Appl. Therm. Eng., vol. 31, no. 16, pp. 3226–3234, Nov. 2011. DOI: 10.1016/j.applthermaleng.2011.06.004.
  • J. W. Ackerman, “Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes,” J. Heat Transf., vol. 92, no. 3, pp. 490–497, Aug. 1970. DOI: 10.1115/1.3449698.
  • R. Hendricks, R. Graham, Y. Hsu, and R. Friedman, “Experimental heat-transfer results for cryogenic hydrogen flowing in tubes at subcritical and supercritical pressures to 800 pounds per square inch absolute,” NASA TN, pp. D3095, Mar. 1, 1966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.