Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
119
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of particle deposition on heat transfer characteristics for nanofluid free impinging jet: A numerical study

, , &
Pages 1297-1322 | Received 14 Sep 2022, Accepted 26 Jan 2023, Published online: 03 May 2023

References

  • A. Kumar Agarwal, S. Kumar Goyal and D. K. Srivastava, “Time resolved numerical modeling of oil jet cooling of a medium duty diesel engine piston,” Int. Commun. Heat Mass Transfer, vol. 38, no. 8, pp. 1080–1085, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.05.006.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Dev. Appl. Non-Newtonian Flows, vol. 231, pp. 99–105, 1995. DOI: https://www.researchgate.net/publication/236353373.
  • S. Toghyani, E. Afshari, E. Baniasadi and M. S. Shadloo, “ Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system,” Renewable Energy, vol. 141, pp. 1013–1025, 2019. DOI: 10.1016/j.renene.2019.04.073.
  • J. Mohammadpour, F. Salehi, M. Sheikholeslami and A. Lee, “A computational study on nanofluid impingement jets in thermal management of photovoltaic panel,” Renewable Energy, vol. 189, pp. 970–982, 2022. DOI: 10.1016/j.renene.2022.03.069.
  • M. Bilal Hafeez, R. Amin, K. S. Nisar, W. Jamshed, A.-H. Abdel-Aty and M. Motawi Khashan, “Heat transfer enhancement through nanofluids with applications in automobile radiator,” Case Stud. Therm. Eng., vol. 27, p. 101192, 2021. DOI: 10.1016/j.csite.2021.101192.
  • S. M. Fotukian and M. Nasr Esfahany, “Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube,” Int. Commun. Heat Mass Transfer, vol. 37, no. 2, pp. 214–219, 2010. DOI: 10.1016/j.icheatmasstransfer.2009.10.003.
  • S. M. Hashemi and M. A. Akhavan-Behabadi, “An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux,” Int. Commun. Heat Mass Transfer, vol. 39, no. 1, pp. 144–151, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.09.002.
  • C. J. Ho, L. C. Wei and Z. W. Li, “An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid,” Appl. Therm. Eng., vol. 30, no. 2–3, pp. 96–103, 2010. DOI: 10.1016/j.applthermaleng.2009.07.003.
  • Q. Li, X. Yimin and Y. Feng, “Experimental investigation of submerged single jet impingement using Cu-water nanofluid,” Appl. Therm. Eng., vol. 36, pp. 426–433, 2012. DOI: 10.1016/j.applthermaleng.2011.10.059.
  • L. Jizu, W. Peng, M. Bai, G. Li and K. Zeng, “Experimental visualization of gas-liquid-solid three-phase flow during reciprocating motion,” Exp. Therm. Fluid Sci., vol. 80, pp. 155–167, 2017. DOI: 10.1016/j.expthermflusci.2016.08.005.
  • P. Naphon and S. Wongwises, “Experimental study of jet nanofluids impingement system for cooling computer processing unit,” JECTC, vol. 1, no. 3, pp. 38–44, 2011. DOI: 10.4236/jectc.2011.13005.
  • P. Naphon and L. Nakharintr, “Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink,” J. Eng. Phys. Thermophys., vol. 6, no. 85, pp. 1432–1440, 2012. DOI: 10.1007/s10891-012-0793-8.
  • C. Tam Nguyen, N. Galanis, G. Polidori, S. Fohanno, C. V. Popa and A. L. Bechec, “An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid,” Int. J. Therm. Sci., vol. 2, no. 48, pp. 401–411, 2009. DOI: 10.1016/j.ijthermalsci.2008.10.007.
  • C. T. Nguyen, G. Laplante, M. Cury and G. Simon, “Experimental investigation of impinging jet heat transfer and erosion effect using Al2O3–water nanofluid,” 6th IASME/WSEAS Int. Conf. Fluid Mech. Aerodyn. (FMA’08), Rhodes, Greece, Aug. 20–22, 2008.
  • C. Tam Nguyen, G. Roy, C. Gauthier and N. Galanis, “Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system,” Appl. Therm. Eng., vol. 9, no. 27, pp. 1501–1506, 2007. DOI: 10.1016/j.applthermaleng.2006.09.028.
  • T. Chang, S. Syu and Y. Yang, “Effects of particle volume fraction on spray heat transfer performance of Al2O3–water nanofluid,” Int. J. Heat Mass Transfer, vol. 4, no. 55, pp. 1014–1021, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.009.
  • L. Jizu, H. Chengzhi, B. Minli, Z. Ke, C. Shengnan and G. Dongdong, “Experimental investigation of free single jet impingement using SiO2-Water nanofluid,” Exp. Therm. Fluid Sci., vol. 84, pp. 39–46, 2017. DOI: 10.1016/j.expthermflusci.2017.01.010.
  • L. Jizu, C. Shengnan, H. Chengzhi, B. Minli, W. Peng and Z. Ke, “Experimental investigation of free single jet impingement using Al2O3-water nanofluid,” Int. Commun. Heat Mass Transfer, vol. 88, pp. 126–135, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.08.017.
  • S. D. Barewar, S. Tawri, and S. S. Chougule, “Heat transfer characteristics of free nanofluid impinging jet on flat surface with different jet to plate distance: An experimental investigation,” Chem. Eng. Process.: Process Intensif., vol. 136, pp. 1–10, 2019. DOI: 10.1016/j.cep.2018.12.001.
  • ANSYS. Ansys User and Theory Guide., Ansys Fluent, Release 19.1. 2019.
  • Y. Feng and C. Kleinstreuer, “Nanofluid convective heat transfer in a parallel-disk system,” Int. J. Heat Mass Transfer, vol. 21–22, no. 53, pp. 4619–4628, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.031.
  • O. Manca, P. Mesolella, S. Nardini and D. Ricci, “Numerical study of a confined slot impinging jet with nanofluids,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 188, 2011.
  • G. Roy, C. Tam Nguyen and P.-R. Lajoie, “Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids,” Superlattices Microstruct., vol. 35, no. 3–6, pp. 497–511, 2004. DOI: 10.1016/j.spmi.2003.09.011.
  • G. Roy, S. J. Palm and C. Tam Nguyen, “Heat transfer and fluid flow of nanofluids in laminar radial flow cooling systems,” J. Therm. Sci., vol. 4, no. 15, pp. 362–367, 2005. DOI: 10.1007/s11630-005-0059-2.
  • S. J. Palm, G. Roy and C. Tam Nguyen, “Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties,” Appl. Therm. Eng., vol. 17–18, no. 26, pp. 2209–2218, 2006. DOI: 10.1016/j.applthermaleng.2006.03.014.
  • N. S. M. Hanafi, W. A. W. Ghopa, R. Zulkifli, S. Abdullah, Z. Harun and M. R. A. Mansor, “Numerical simulation on the effectiveness of hybrid nanofluid in jet impingement cooling application,” Energy Rep., vol. 8, pp. 764–775, 2022, DOI: 10.1016/j.egyr.2022.07.096.
  • W. M. El-Maghlany, M. M. Sorour, A. M. Abbass and M. A. Alnakeeb, “Numerical study of free surface axisymmetric jet impinging on a heated flat surface utilizing high concentration SiO2 nanofluid,” J. Taiwan Inst. Chem. Eng., vol. 135, p. 104401, 2022. DOI: 10.1016/j.jtice.2022.104401.
  • R. Ekiciler, M. S. A. Çetinkaya and K. Arslan, “Effect of shape of nanoparticle on heat transfer and entropy generation of nanofluid-jet impingement cooling,” Int. J. Green Energy, vol. 17, no. 10, pp. 555–567, 2020. DOI: 10.1080/15435075.2020.1739692.
  • N. S. M. Hanafi, W. A. W. Ghopa, R. Zulkifli, S. Abdullah, Z. Harun and M. R. A. Mansor, “Numerical simulation on the effectiveness of hybrid nanofluid in jet impingement cooling application,” Energy Rep., vol. 8, pp. 764–775, 2022. DOI: 10.1016/j.egyr.2022.07.096.
  • M. Hashemi-Tilehnoee and E. P. d Barrio, “Magneto laminar mixed convection and entropy generation analyses of an impinging slot jet of Al2O3-water and Novec-649,” Therm. Sci. Eng. Prog., vol. 36, p. 101524, 2022. DOI: 10.1016/j.tsep.2022.101524.
  • S. K. Das, S. Choi, W. Yu and T. Pradeep, Nanofluid Science and Technology. Hoboken, NJ: Wiley Online Library, 2007.
  • V. Jiradilok, D. Gidaspow, J. Kalra, S. Damronglerd and S. Nitivattananon, “Explosive dissemination and flow of nanoparticles,” Powder Technol., vol. 164, no. 1, pp. 33–49, 2006. DOI: 10.1016/j.powtec.2005.12.020.
  • B. T. Werner, A Physical Model of Wind-Blown Sand Transport. Los Angeles, CA: California Institute of Technology, 1987. https://resolver.caltech.edu/CaltechETD:Etd-08042008-114600.
  • L. N. Rogers and J. Reed, “The adhesion of particles undergoing an elastic-plastic impact with a surface,” J. Phys. D: Appl. Phys., vol. 17, no. 4, pp. 677–689, 1984. DOI: 10.1088/0022-3727/17/4/007.
  • K. L. Johnson, K. Kendall and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. A, vol. 324, pp. 301–313., 1971. DOI: 10.1098/rspa.1971.0141.
  • C. Thornton and Z. Ning, “A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres,” Powder Technol., vol. 2, no. 99, pp. 154–162, 1998. DOI: 10.1016/S0032-5910(98)00099-0.
  • A. Konstandopoulos, "Effects of particle inertia on aerosol transport and deposit growth dynamics." 1991.
  • M. Sommerfeld and N. Huber, “Experimental analysis and modelling of particle-wall collisions,” Int. J. Multiphase Flow, vol. 25, no. 6–7, pp. 1457–1489, 1999. DOI: 10.1016/S0301-9322(99)00047-6.
  • Z. F. Tian, J. Y. Tu and G. H. Yeoh, “Numerical modelling and validation of gas-particle flow in an in-line tube bank,” Comput. Chem. Eng., vol. 31, no. 9, pp. 1064–1072, 2007. DOI: 10.1016/j.compchemeng.2006.09.008.
  • E. Heinl and M. Bohnet, “Calculation of particle-all adhesion in horizontal gas-solids flow using CFD,” Powder Technol., vol. 159, no. 2, pp. 95–104, 2005. DOI: 10.1016/j.powtec.2004.09.037.
  • W. Peng, L. Jizu, B. Minli, W. Yuyan and H. Chengzhi, “A numerical investigation of impinging jet cooling with nanofluids,” Nanoscale Microscale Thermophys. Eng., vol. 4, no. 18, pp. 329–353, 2014. DOI: 10.1080/15567265.2014.921749.
  • A. Miller and D. Gidaspow, “Dense vertical gas-solid flow in a pipe,” AICHE J., vol. 11, no. 38, pp. 1801–1815, 1992. DOI: 10.1002/aic.690381111.
  • D. Gidaspow, R. Bezburuah and J. Ding, “Hydrodynamics of circulating fluidized beds kinetic theory approach,” Proc. 7th Eng. Found. Conf. Fluid., Gold Coast, Australia, 1992.
  • S. Zhuohui, “Numerical simulation of fouling process on heat transfer surface,” China University Petroleum, 2008.
  • H. Coşanay, H. F. Oztop and F. Selimefendigil, “A computational analysis on convective heat transfer for impinging slot nanojets onto a moving hot body,” HFF, vol. 32, no. 1, pp. 364–386, 2022. DOI: 10.1108/HFF-12-2020-0778.
  • M. Amjadian, H. Safarzadeh, M. Bahiraei, S. Nazari and B. Jaberi, “Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O–water nanofluid: An experimental study,” Int. Commun. Heat Mass Transfer, vol. 112, p. 104509, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104509.
  • U. Allauddin, et al., “Heat transfer enhancement caused by impinging jets of Al2O3-water nanofluid on a micro-pin fin roughened surface under crossflow conditions-a numerical study,” J. Enhanced Heat Transfer, vol. 27, no. 4, pp. 367–387, 2020. DOI: 10.1615/JEnhHeatTransf.2020033413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.