Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
145
Views
1
CrossRef citations to date
0
Altmetric
Articles

Pore-scale and volume-averaged simulations of phase change material melting: A comparison between local and nonlocal thermal equilibrium

, , &
Pages 1323-1337 | Received 13 Dec 2022, Accepted 24 Jan 2023, Published online: 15 Mar 2023

References

  • H. Nemati and M. Habbibiy, “Analytical and numerical analysis of phase change material solidification in partially filled capsules considering breathing vent,” J. Energy Storage, vol. 40, pp. 102725, 2021. DOI: 10.1016/j.est.2021.102725.
  • M. Ghalambaz et al., “Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach,” Appl. Therm. Eng., vol. 193, pp. 116945, 2021. DOI: 10.1016/j.applthermaleng.2021.116945.
  • R. Nicholls, M. Moghimi, and A. Griffiths, “Impact of fin type and orientation on performance of phase change material-based double pipe thermal energy storage,” J. Energy Storage, vol. 50, pp. 104671, 2022. DOI: 10.1016/j.est.2022.104671.
  • K. Vafai and S. Whitaker, “Simultaneous heat and mass transfer accompanied by phase change in porous insulation,” J. Heat Transfer, vol. 108, no. 1, pp. 132–140, 1986. DOI: 10.1115/1.3246877.
  • K. Vafai and H. Tien, “A numerical investigation of phase change effects in porous materials,” Int. J. Heat Mass Transf., vol. 32, no. 7, pp. 1261–1277, 1989. DOI: 10.1016/0017-9310(89)90027-6.
  • K. Vafai and M. Sozen, “An investigation of a latent heat storage porous bed and condensing flow through it,” J. Heat Transfer, vol. 112, no. 4, pp. 1014–1022, 1990. DOI: 10.1115/1.2910473.
  • S. D. Farahani, A. D. Farahani, and E. Hajian, “Effect of PCM and porous media/nanofluid on the thermal efficiency of microchannel heat sinks,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105546, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105546.
  • J. Duan, “The PCM-porous system used to cool the inclined PV panel,” Renew. Energy, vol. 180, pp. 1315–1332, 2021. DOI: 10.1016/j.renene.2021.08.097.
  • C. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs),” Sol. Energy, vol. 84, no. 8, pp. 1402–1412, 2010. DOI: 10.1016/j.solener.2010.04.022.
  • Y. Tian and C. Y. Zhao, “A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals,” Energy, vol. 36, no. 9, pp. 5539–5546, 2011. DOI: 10.1016/j.energy.2011.07.019.
  • C. Zhang et al., “Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe,” Energy, vol. 195, pp. 116809, 2020. DOI: 10.1016/j.energy.2019.116809.
  • H. Liu, S. Ahmad, Y. Shi, and J. Zhao, “A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling,” Energy, vol. 231, pp. 120869, 2021. DOI: 10.1016/j.energy.2021.120869.
  • X. Chen, X. Li, X. Xia, C. Sun, and R. Liu, “Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions,” Energy, vol. 216, pp. 119259, 2021. DOI: 10.1016/j.energy.2020.119259.
  • H. Li et al., “Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities,” Energy, vol. 237, pp. 121540, 2021. DOI: 10.1016/j.energy.2021.121540.
  • H. Zuo et al., “Numerical investigation and optimal design of partially filled sectorial metal foam configuration in horizontal latent heat storage unit,” Energy, vol. 237, pp. 121640, 2021. DOI: 10.1016/j.energy.2021.121640.
  • S. Huang, J. Lu, and Y. Li, “Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units,” Energy, vol. 239, pp. 122489, 2022. DOI: 10.1016/j.energy.2021.122489.
  • A. Amiri and K. Vafai, “Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media,” Int. J. Heat Mass Transf., vol. 37, no. 6, pp. 939–954, 1994. DOI: 10.1016/0017-9310(94)90219-4.
  • B. Alazmi and K. Vafai, “Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions,” Int. J. Heat Mass Transf., vol. 45, no. 15, pp. 3071–3087, 2002. DOI: 10.1016/S0017-9310(02)00044-3.
  • K. Vafai and K. Yang, “A note on local thermal non-equilibrium in porous media and heat flux bifurcation phenomenon in porous media,” Transp. Porous Med., vol. 96, no. 1, pp. 169–172, 2013. DOI: 10.1007/s11242-012-0080-3.
  • P. Wang, K. Vafai, D. Liu, and C. Xu, “Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed,” Int. J. Heat Mass Transf., vol. 80, pp. 789–801, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.021.
  • M. Sözen and K. Vafai, “Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed,” Int. J. Heat Mass Transf., vol. 33, no. 6, pp. 1247–1261, 1990. DOI: 10.1016/0017-9310(90)90255S.
  • B. Alazmi and K. Vafai, “Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media,” J. Heat Transfer, vol. 126, no. 3, pp. 389–399, 2004. DOI: 10.1115/1.1723470.
  • X. L. Ouyang, K. Vafai, and P. X. Jiang, “Analysis of thermally developing flow in porous media under local thermal non-equilibrium conditions,” Int. J. Heat Mass Transf., vol. 67, pp. 768–775, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.056.
  • P. Wang, K. Vafai, and D. Liu, “Analysis of radiative effect under local thermal non-equilibrium conditions in porous media-application to a solar air receiver,” Numer. Heat Transf. A: Appl., vol. 65, no. 10, pp. 931–948, 2014. DOI: 10.1080/10407782.2013.850917.
  • H. Xu, Z. Xing, and K. Vafai, “Analytical considerations of flow/thermal coupling of nanofluids in foam metals with local thermal non-equilibrium (LTNE) phenomena and inhomogeneous nanoparticle distribution,” Int. J. Heat Fluid Flow, vol. 77, pp. 242–255, 2019. DOI: 10.1016/j.ijheatfluidflow.2019.04.009.
  • F. Golfier, B. D. Wood, L. Orgogozo, M. Quintard, and M. Buès, “Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions,” Adv. Water Resour., vol. 32, no. 3, pp. 463–485, 2009. DOI: 10.1016/j.advwatres.2008.11.012.
  • L. Orgogozo, F. Golfier, M. Buès, and M. Quintard, “Upscaling of transport processes in porous media with biofilms in non-equilibrium conditions,” Adv. Water Resour., vol. 33, no. 5, pp. 585–600, 2010. DOI: 10.1016/j.advwatres.2010.03.004.
  • K. T. Harris, A. Haji-Sheikh, and A. A. Nnanna, “Phase-change phenomena in porous media–a non-local thermal equilibrium model,” Int. J. Heat Mass Transf., vol. 44, no. 8, pp. 1619–1625, 2001. DOI: 10.1016/S0017-9310(00)00191-5.
  • Y. Davit, G. Debenest, B. D. Wood, and M. Quintard, “Modeling non-equilibrium mass transport in biologically reactive porous media,” Adv. Water Resour., vol. 33, no. 9, pp. 1075–1093, 2010. DOI: 10.1016/j.advwatres.2010.06.013.
  • U. Stritih, “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transf., vol. 47, no. 12-13, pp. 2841–2847, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.02.001.
  • A. Alhusseny, N. Al-Zurfi, A. Nasser, A. Al-Fatlawi, and M. Aljanabi, “Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units,” Int. J. Heat Mass Transf., vol. 150, pp. 119320, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119320.
  • X. Zhang et al., “Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater,” Int. J. Heat Mass Transf., vol. 170, pp. 121021, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121021.
  • C. Zhao et al., “Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams,” Int. J. Heat Mass Transf., vol. 150, pp. 119348, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119348.
  • C. Yang, Y. Xu, X. Cai, and Z. J. Zheng, “Melting behavior of the latent heat thermal energy storage unit with fins and graded metal foam,” Appl. Therm. Eng., vol. 198, pp. 117462, 2021. DOI: 10.1016/j.applthermaleng.2021.117462.
  • S. Feng, M. Shi, Y. Li, and T. J. Lu, “Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam,” Int. J. Heat Mass Transf., vol. 90, pp. 838–847, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.088.
  • J. Paek, B. Kang, S. Kim, and M. J. Hyun, “Effective thermal conductivity and permeability of aluminum foam materials1,” Int. J. Thermophys., vol. 21, no. 2, pp. 453–464, 2000. DOI: 10.1023/A:1006643815323.
  • X. Xiao, P. Zhang, and M. Li, “Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage,” Int. J. Therm. Sci., vol. 81, pp. 94–105, 2014. DOI: 10.1016/j.ijthermalsci.2014.03.006.
  • G. Wang et al., “Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals,” Appl. Therm. Eng., vol. 147, pp. 464–472, 2019. DOI: 10.1016/j.applthermaleng.2018.10.106.
  • L. MatWeb, “Overview of materials for acrylic,” Cast. MatWeb, LLC, [Online] 2019.
  • A. Brent, V. R. Voller, and K. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf. A: Appl., vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • H. B. Mahood, M. S. Mahdi, A. A. Monjezi, A. A.Khadom, and A. N. Campbell, “Numerical investigation on the effect of fin design on the melting of phase change material in a horizontal shell and tube thermal energy storage,” J. Energy Storage, vol. 29, pp. 101331, 2020. DOI: 10.1016/j.est.2020.101331.
  • V. V. Calmidi and R. L. Mahajan, “Forced convection in high porosity metal foams,” J. Heat Transfer, vol. 122, no. 3, pp. 557–565, 2000. DOI: 10.1115/1.1287793.
  • Y. Mahmoudi, K. Hooman, and K. Vafai, Convective heat Transfer in Porous Media. United States: CRC Press, 2019.
  • Z. Liu, Y. Yao, and H. Wu, “Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage,” Appl. Energy, vol. 112, pp. 1222–1232, 2013. DOI: 10.1016/j.apenergy.2013.02.022.
  • A. Ghahremannezhad, H. Xu, M. R. Salimpour, P. Wang, and K. Vafai, “Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams,” Appl. Therm. Eng., vol. 179, pp. 115731, 2020. DOI: 10.1016/j.applthermaleng.2020.115731.
  • M. M. Heyhat, S. Mousavi, and M. Siavashi, “Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle,” J. Energy Storage, vol. 28, pp. 101235, 2020. DOI: 10.1016/j.est.2020.101235.
  • J. M. Mahdi, R. Pal Singh, H. M. Taqi Al-Najjar, S. Singh, and E. C. Nsofor, “EC Efficient thermal management of the photovoltaic/phase change material system with innovative exterior metal-foam layer,” Sol. Energy, vol. 216, pp. 411–427, 2021. DOI: 10.1016/j.solener.2021.01.008.
  • J. Duan, “A novel heat sink for cooling concentrator photovoltaic system using PCM-porous system,” Appl. Therm. Eng., vol. 186, pp. 116522, 2021. DOI: 10.1016/j.applthermaleng.2020.116522.
  • Z. A. Qureshi, S. A. B. Al-Omari, E. Elnajjar, O. Al-Ketan, and R. A. Al-Rub, “Using triply periodic minimal surfaces (TPMS)-based metal foams structures as skeleton for metal-foam-PCM composites for thermal energy storage and energy management applications,” Int. Commun. Heat Mass Transf., vol. 124, pp. 105265, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105265.
  • Z. A. Qureshi, E. Elnajjar, O. Al-Ketan, R. A. Al-Rub, and S. B. Al-Omari, “Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS),” Int. J. Heat Mass Transf., vol. 170, pp. 121001, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121001.
  • V. Calmidi and R. Mahajan, “The effective thermal conductivity of high porosity fibrous metal foams,” J. Heat Transfer., vol. 121, no. 2, pp. 466–471, 1999. DOI: 10.1115/1.2826001.
  • T. L. Bergman, F. P. Incropera, D. P. Dewitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. United States: Wiley, 2011.
  • E. Kravvaritis, K. Antonopoulos, and C. Tzivanidis, “Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method,” Appl. Energy, vol. 88, no. 12, pp. 4459–4469, 2011. DOI: 10.1016/j.apenergy.2011.05.032.
  • D. Y. Lee and K. Vafai, “Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media,” Int. J. Heat Mass Transf., vol. 42, no. 3, pp. 423–435, 1999. DOI: 10.1016/S0017-9310(98)00185-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.