Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
109
Views
2
CrossRef citations to date
0
Altmetric
Articles

Nonlinear convective nanofluid flow in an annular region of two concentric cylinders with generalized Fourier law: An application of Hamilton-Crosser nanofluid model

ORCID Icon, , &
Pages 1383-1400 | Received 07 Nov 2022, Accepted 27 Jan 2023, Published online: 17 Mar 2023

References

  • A. H. Pordanjani and S. Aghakhani, “Numerical investigation of natural convection and irreversibilities between two inclined concentric cylinders in presence of uniform magnetic field and radiation,” Heat Transf. Eng., vol. 43, no. 11, pp. 937–957, 2022.
  • S. Gouran, S. Mohsenian and S. E. Ghasemi, “Theoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques,” Alexandria Eng. J., vol. 61, no. 4, pp. 3237–3248, 2022.
  • L. Zhang, et al., “Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant,” PLoS One, vol. 17, no. 5, pp. e0265026, 2022.
  • A. Miles and R. Bessaïh, “Heat transfer and entropy generation analysis of three-dimensional nanofluids flow in a cylindrical annulus filled with porous media,” Int. Commun. Heat Mass Transf., vol. 124, pp. 105240, 2021.
  • K. Thriveni and B. Mahanthesh, “Sensitivity computation of nonlinear convective heat transfer in hybrid nanomaterial between two concentric cylinders with irregular heat sources,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105677, 2021.
  • I. D. Azzawi, A. F. Hasan and S. G. Yahya, “Computational optimum design of natural convection in a concentric and eccentric annular cylinder using nanofluids,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, pp. 09576509221117936, 2022.
  • M. Habibishandiz and Z. Saghir, “MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder,” Int. J. Thermofluid., vol. 14, pp. 100151, 2022.
  • A. I. S. A. Abderrahmane, M. Hatami, M. A. Medebber, S. Haroun, S. E. Ahmed and S. Mohammed, “Non-Newtonian nanofluid natural convective heat transfer in an inclined Half-annulus porous enclosure using FEM,” Alexandria Eng. J., vol. 61, no. 7, pp. 5441–5453, 2022.
  • A. Alsaedi, K. Muhammad and T. Hayat, “Numerical study of MHD hybrid nanofluid flow between two coaxial cylinders,” Alexandria Eng. J., vol. 61, no. 11, pp. 8355–8362, 2022.
  • B. Kanimozhi, M. Muthtamilselvan, Q. M. Al-Mdallal and B. Abdalla, “Coupled buoyancy and Marangoni convection in a hybrid nanofluid-filled cylindrical porous annulus with a circular thin baffle,” European Phys. J. Special Topics, vol. 231, pp. 1–16, 2022.
  • H. A. Swamy, M. Sankar and N. K. Reddy, “Analysis of entropy generation and energy transport of Cu-water nanoliquid in a tilted vertical porous annulus,” Int. J. Appl. Comput. Math., vol. 8, no. 1, pp. 1–23, 2022.
  • T. Tayebi, H. F. Öztop and A. J. Chamkha, “MHD natural convection of a CNT-based nanofluid-filled annular circular enclosure with inner heat-generating solid cylinder,” Eur Phys. J. Plus, vol. 136, no. 2, pp. 150, 2021.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Develop. Appl. Non-Newtonian Flow., vol. 66, pp. 99–105, 1995.
  • I. Ullah, “Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles,” Int. Commun. Heat Mass Transf., vol. 132, pp. 105920, 2022.
  • M. I. Asjad, M. Zahid, Y. M. Chu and D. Baleanu, “Prabhakar fractional derivative and its applications in the transport phenomena containing nanoparticles,” Therm. Sci., vol. 25, no. 2, pp. 411–416, 2021.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, pp. 2002–2018, 2007.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001.
  • S. K. Das, N. Putra, P. Thiesen and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transf., vol. 125, no. 4, pp. 567–574, 2003.
  • J. Maxwell, “A Treatise on Electricity and Magnetisms,” vol. 1, no. 3, pp. 310–314, 1891.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001.
  • H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” J. Appl. Phys., vol. 91, no. 7, pp. 4568–4572, 2002.
  • H. Xie, H. Lee, W. Youn and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” J. Appl. Phys., vol. 94, no. 8, pp. 4967–4971, 2003.
  • H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2931–2933, 2003.
  • C. H. Chon, K. D. Kihm, S. P. Lee and S. U. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement,” Appl. Phys. Lett., vol. 87, no. 15, pp. 153107, 2005.
  • U. Rashid, H. Liang, H. Ahmad, M. Abbas, A. Iqbal and Y. S. Hamed, “Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder,” Results Phys., vol. 21, pp. 103812, 2021.
  • P. M. Patil and M. Kulkarni, “Analysis of MHD mixed convection in a Ag-TiO2 hybrid nanofluid flow past a slender cylinder,” Chin. J. Phys., vol. 73, pp. 406–419, 2021.
  • A. Hiremath, G. J. Reddy, O. A. Bég and H. Holla, “Numerical investigation on transient third-grade magnetized nanofluid flow and radiative convection heat transfer from a stationary/moving cylinder: Nanomaterial and nanoparticle shape effects,” Waves Random Complex Media, pp. 1–30, 2022. DOI: 10.1080/17455030.2021.2024300.
  • R. Hemalatha, P. K. Kameswaran and P. V. S. N. Murthy, “Effect of nanoparticle shape on the mixed convective transport over a vertical cylinder in a non-Darcy porous medium,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105962, 2022.
  • T. H. Alarabi, A. M. Rashad and A. Mahdy, “Homogeneous–heterogeneous chemical reactions of radiation hybrid nanofluid flow on a cylinder with joule heating: Nanoparticles shape impact,” Coatings, vol. 11, no. 12, pp. 1490, 2021. DOI: 10.3390/coatings11121490.
  • X. Shi, P. Jaryani, A. Amiri, A. Rahimi and E. H. Malekshah, “Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect,” Powder Technol., vol. 346, pp. 160–170, 2019. DOI: 10.1016/j.powtec.2018.12.071.
  • J. B. J. Fourier and G. Darboux, Théorie analytique de la chaleur. Paris: Didot, vol 504, 1822.
  • C. Cattaneo, “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Univ. Modena, vol. 3, pp. 83–101, 1948.
  • C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech. Res. Commun, vol. 36, no. 4, pp. 481–486, 2009. DOI: 10.1016/j.mechrescom.2008.11.003.
  • Z. Hussain, A. Hussain, M. S. Anwar and M. Farooq, “Analysis of Cattaneo–Christov heat flux in Jeffery fluid flow with heat source over a stretching cylinder,” J. Thermal Anal. Calorim., vol. 147, no. 4, pp. 3391–3402, 2022. DOI: 10.1007/s10973-021-10573-0.
  • P. S. Reddy, P. Sreedevi and A. J. Chamkha, “Heat and mass transfer analysis of nanofluid flow over swirling cylinder with Cattaneo–Christov heat flux,” J. Thermal Anal. Calorim., vol. 147, no. 4, pp. 3453–3468, 2022. DOI: 10.1007/s10973-021-10586-9.
  • P. Rana, V. Makkar and G. Gupta, “Finite element study of bio-convective Stefan blowing Ag-MgO/water hybrid nanofluid induced by stretching cylinder utilizing non-Fourier and non-Fick’s laws,” Nanomaterials, vol. 11, no. 7, pp. 1735, 2021. DOI: 10.3390/nano11071735.
  • H. Waqas, T. Muhammad, S. Hussain, S. Yasmin and G. Rasool, “Consequences of Fourier’s and Fick’s laws in bioconvective couple stress nanofluid flow configured by an inclined stretchable cylinder,” Int. J. Modern Phys. B, vol. 35, no. 17, pp. 2150176, 2021.
  • D. Gambo, T. S. Yusuf, S. A. Oluwagbemiga, J. D. Kozah, J. J and Gambo, J. J., “Analysis of free convective hydromagnetic flow of heat generating/absorbing fluid in an annulus with isothermal and adiabatic boundaries,” Partial Different. Eq. Appl. Math., vol. 4, pp. 100080, 2021.
  • M. Ramzan, Z. Shah, P. Kumam, W. Khan, W. Watthayu and W. Kumam, “Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface,” PLoS One, vol. 17, no. 4, pp. e0264208, 2022. DOI: 10.1371/journal.pone.0264208.
  • S. M. Hussain, “Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions,” Sci. Report, vol. 12, no. 1, pp. 1–17, 2022. DOI: 10.1038/s41598-022-05703-z.
  • T. Anwar, P. Kumam and P. Thounthong, “Fractional modeling and exact solutions to analyze thermal performance of Fe3O4-MoS2-water hybrid nanofluid flow over an inclined surface with ramped heating and ramped boundary motion,” IEEE Access, vol. 9, pp. 12389–12404, 2021.
  • T. Anwar, P. Kumam and K. Sitthithakerngkiet, “A fractional model for thermal investigation of MoS2‐Fe3O4/engine oil hybrid nanofluid under double ramped conditions and shape factor influence: The Atangana–Baleanu approach,” Math. Method. Appl. Sci., vol. 10, pp. 17830, 2021.
  • T. Anwar, P. Kumam, Z. Shah and K. Sitthithakerngkiet, “Significance of shape factor in heat transfer performance of molybdenum-disulfide nanofluid in multiple flow situations; A comparative fractional study,” Molecules, vol. 26, no. 12, pp. 3711, 2021.
  • A. S. Idowu, M. T. Akolade, T. L. Oyekunle and J. U. Abubakar, “Nonlinear convection flow of dissipative Casson nanofluid through an inclined annular microchannel with a porous medium,” Heat Transf., vol. 50, no. 4, pp. 3388–3406, 2021. DOI: 10.1002/htj.22033.
  • B. Jha and B. Aina, “Impact of induced magnetic field on magnetohydrodynamic (MHD) natural convection flow in a vertical annular micro-channel in the presence of radial magnetic field,” Propul. Power Res., vol. 7, no. 2, pp. 171–181, 2018. DOI: 10.1016/j.jppr.2018.04.004.
  • S. Qayyum, T. Hayat, S. A. Shehzad and A. Alsaedi, “Nonlinear convective flow of powell-erying magneto nanofluid with Newtonian heating,” Result. Phys., vol. 7, pp. 2933–2940, 2017. DOI: 10.1016/j.rinp.2017.08.001.
  • B. K. Jha, B. Aina and S. Isa, “Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution,” J. King Saud University-Sci., vol. 27, no. 3, pp. 253–259, 2015. DOI: 10.1016/j.jksus.2014.12.002.
  • G. Ojemeri and M. M. Hamza, “Heat transfer analysis of arrhenius-controlled free convective hydromagnetic flow with heat generation/absorption effect in a micro-channel,” Alexandria Eng. J., vol. 61, no. 12, pp. 12797–12811, 2022.
  • W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Experim. Therm. Fluid Sci., vol. 33, no. 4, pp. 706–714, 2009. DOI: 10.1016/j.expthermflusci.2009.01.005.
  • M. Arif, P. Kumam, W. Kumam and Z. Mostafa, “Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: A fractional model,” Case Stud. Therm. Eng., vol. 31, pp. 101837, 2022.
  • T. Anwar, P. Kumam and W. Watthayu, “An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption,” Sci. Report, vol. 10, no. 1, pp. 1–19, 2020.
  • T. Anwar, P. Kumam and S. Muhammad, “New fractional model to analyze impacts of Newtonian heating, shape factor and ramped flow function on MgO–SiO2–Kerosene oil hybrid nanofluid,” Case Stud. Therm. Eng., vol. 38, pp. 102361, 2022.
  • P. Kumam, A. Tassaddiq, W. Watthayu, Z. Shah and T. Anwar, “Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis,” Math. Comput. Simul., vol. 201, pp. 486–507, 2022.
  • B. J. Gireesha and S. Sindhu, “MHD natural convection flow of Casson fluid in an annular microchannel containing porous medium with heat generation/absorption,” Nonlin. Eng., vol. 9, no. 1, pp. 223–232, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.