Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 11
185
Views
2
CrossRef citations to date
0
Altmetric
Articles

Elastic deformation effect on carboxymethyl cellulose water-based (TiO2–Ti6Al4V) hybrid nanoliquid over a stretching sheet with an induced magnetic field

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1401-1415 | Received 30 Nov 2022, Accepted 27 Jan 2023, Published online: 21 Mar 2023

References

  • S. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Proc. ASME, IMECE., vol. 66, pp. 99–105, 1995.
  • R. J. P. Gowda, et al., “Dynamics of nanoparticle diameter and interfacial layer on flow of non-Newtonian (Jeffrey) nanofluid over a convective curved stretching sheet,” Int. J. Mod. Phys. B, vol. 36, no. 31, pp. 2250224, 2022. DOI: 10.1142/S0217979222502241.
  • F. Wang, et al., “Aspects of uniform horizontal magnetic field and nanoparticle aggregation in the flow of nanofluid with melting heat transfer,” Nanomaterials, vol. 12, no. 6, Jan. 2022, pp. Art. no. 6, DOI: 10.3390/nano12061000.
  • P. Srilatha, et al., “Melting phenomenon in the flow of dusty nanofluid over a stretching sheet in the presence of single walled carbon nanotubes,” Case Stud. Therm. Eng., vol. 40, pp. 102585, Dec. 2022. DOI: 10.1016/j.csite.2022.102585.
  • M. D. Alsulami, M. C. Jayaprakash, J. K. Madhukesh, G. Sowmya and R. N. Kumar, “Bioconvection in radiative Glauert wall jet flow of nanofluid: A Buongiorno model,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–18, Oct. 2022. DOI: 10.1080/17455030.2022.2128224.
  • A. J. Chamkha and I. Pop, “Effect of thermophoresis particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium,” Int. Commun. Heat Mass Transf., vol. 31, no. 3, pp. 421–430, Apr. 2004. DOI: 10.1016/j.icheatmasstransfer.2004.02.012.
  • M. Veera Krishna and A. J. Chamkha, “Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium,” Results Phys., vol. 15, pp. 102652, Dec. 2019. DOI: 10.1016/j.rinp.2019.102652.
  • A. Chamkha, R. S. R. Gorla and K. Ghodeswar, “Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid,” Transp Porous Med., vol. 86, no. 1, pp. 13–22, Jan. 2011. DOI: 10.1007/s11242-010-9601-0.
  • J. C. Umavathi, “Micropolar nanofluid overlying a porous layer: Thermosolutal convection,” Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, pp. 23977914221117030. Aug. 2022. DOI: 10.1177/23977914221117030.
  • M. M. A. Lashin, M. F. Yassen, J. C. Umavathi, K. Mahesh, H. Singh and D. G. Prakasha, “Magnetized squeezing nanofluid flow with viscous heating and Robin boundary conditions: A Buongiorno nanofluid model,” Int. J. Mod. Phys. B, vol. 37, no. 04, pp. 2350037, Feb. 2023. DOI: 10.1142/S0217979223500376.
  • I. H. Mondal, Carboxymethyl Cellulose: Synthesis and Characterization, Hauppauge, NY: Nova Science Publishers, 2019.
  • A. Benchabane and K. Bekkour, “Rheological properties of Carboxymethyl cellulose (CMC) solutions,” Colloid Polym. Sci, vol. 286, pp. 1173, 2008.
  • P. Zainith and N. K. Mishra, “Experimental investigations on stability and viscosity of carboxymethyl cellulose (CMC)-based non-newtonian nanofluids with different nanoparticles with the combination of distilled water,” Int J Thermophys., vol. 42, pp. 137, 2021.
  • X. J. Zhu, M. J. Tan and W. Zhou, “Enhanced superplasticity in commercially pure titanium alloy,” Scr. Mater., vol. 52, pp. 651–655, 2005.
  • Y. L. Hao, S. J. Li, B. B. Sun, M. L. Sui and R. Yang, “Ductile titanium alloy with low Poisson’s ratio,” Phys. Rev. Lett., vol. 98, pp. 216405, 2007.
  • M. Balazic, J. Kopac, M. J. Jackson and W. Ahmed, “Review: Titanium and titanium alloy applications in medicine,” Int. J. Nano Biomater., vol. 1, pp. 3–34, 2007.
  • C. S. Raju, K. R. Sekhar, S. M. Ibrahim, G. Lorenzini, G. V. Reddy and E. Lorenzini, “Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles,” Continuum Mech. Thermodyn., vol. 29, pp. 699–713, 2017.
  • M. D. Alsulami, R. Naveen Kumar, R. J. Punith Gowda and B. C. Prasannakumara, “Analysis of heat transfer using Local thermal non-equilibrium conditions for a non-Newtonian fluid flow containing Ti6Al4V and AA7075 nanoparticles in a porous media,” ZAMM J Appl. Math. Mech./Zeitschrift Für Angewandte Math. Mech. Advance online publication. DOI: 10.1002/zamm.202100360.
  • R. N. Kumar, F. Gamaoun, A. Abdulrahman, J. S. Chohan and R. J. P. Gowda, “Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study,” Int. J. Mod. Phys. B, vol. 36, no. 25, pp. 2250170, Oct. 2022. DOI: 10.1142/S0217979222501703.
  • A. Rauf, N. A. Shah, A. Mushtaq and T. Botmart, “Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet,” MATH, vol. 8, no. 1, pp. 164–193, 2023. DOI: 10.3934/math.2023008.
  • G. K. Ramesh, J. K. Madhukesh, N. A. Shah and S.-J. Yook, “Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition,” Alexandria Eng. J., vol. 64, pp. 969–979, Feb. 2023. DOI: 10.1016/j.aej.2022.09.026.
  • F. Ali, et al., “Irreversibility analysis of cross fluid past a stretchable vertical sheet with mixture of Carboxymethyl cellulose water-based hybrid nanofluid,” Alex. Eng. J., 2022, vol. 64, pp. 107–118.
  • F. Ali, K. Loganathan, S. Eswaramoorthi, K. Prabu, A. Zaib and D. K. Chaudhary, “Heat transfer analysis on Carboxymethyl cellulose water-based cross hybrid nanofluid flow with entropy generation,” J. Nanomater, vol. 2022, pp. 5252918, 2022.
  • B. Ahmad, Z. Iqbal, E. Maraj and S. Ijaz, “Utilization of elastic deformation on Cu–Ag nanoscale particles mixed in hydrogen oxide with unique features of heat generation/absorption: Closed-form outcomes,” Arab. J. Sci. Eng, vol. 44, pp. 5949–5960, 2019.
  • C. Ragavan, S. Munirathinam, M. Govindaraju, A. Abdul-Hakeem and B. Ganga, “Elastic deformation and inclined magnetic field on entropy generation for Walter’s liquid b fluid over a stretching sheet,” J. Appl. Math. Comput. Mech, vol. 18, no. 2, pp. 85–98, 2019.
  • B. Unyong, R. Vadivel, M. Govindaraju, R. Anbuvithya and N. Gunasekaran, “Entropy analysis for ethylene glycol hybrid nanofluid flow with elastic deformation, radiation, non-uniform heat generation/absorption, and inclined Lorentz force effects,” Case Stud. Therm. Eng, vol. 30, pp. 101639, 2022.
  • A. K. A. Hakeem, R. Kalaivanan, B. Ganga and N. V. Ganesh, “Elastic deformation effects on heat and mass fluxes of second grade nanofluid slip flow controlled by aligned lorentz force,” J. Nanofluids, vol. 7, pp. 325–337, 2018.
  • R. Cortell, “Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet,” Phys. Lett. A., vol. 357, pp. 298–305, 2006.
  • N. Manjunatha, Yellamma, R. Sumithra, K. M. Yogeesha, R. Kumar and R. N. Kumar, “Roles and impacts of heat source/sink and magnetic field on non-Darcy three-component Marangoni convection in a two-layer structure,” Int. J. Mod. Phys. B. Advance online publication. Dec. 2022. DOI: 10.1142/S0217979223501862.
  • I. Haq, et al., “Impact of homogeneous and heterogeneous reactions in the presence of hybrid nanofluid flow on various geometries,” Front Chem, vol. 10, pp. 1032805, Oct. 2022. DOI: 10.3389/fchem.2022.1032805.
  • Y.-Q. Song, et al., “Unsteady mixed convection flow of magneto-Williamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features,” Alexandria Eng. J., vol. 61, no. 1, pp. 195–206, 2022. Jan. DOI: 10.1016/j.aej.2021.04.089.
  • M. Nagapavani, et al., “Features of the exponential form of internal heat generation, Cattaneo–Christov heat theory on water-based graphene–CNT–titanium ternary hybrid nanofluid flow,” Heat Transf., vol. 52, no. 1, pp. 144–161, 2023. DOI: 10.1002/htj.22689.
  • A. J. Chamkha, A. F. Al-Mudhaf and I. Pop, “Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium,” Int. Commun. Heat Mass Transf., vol. 33, no. 9, pp. 1096–1102, Nov. 2006. DOI: 10.1016/j.icheatmasstransfer.2006.04.009.
  • A. J. Chamkha and A.-R. A. Khaled, “Similarity solutions for hydromagnetic simultaneous heat and mass transfer by natural convection from an inclined plate with internal heat generation or absorption,” Heat Mass Transf., vol. 37, no. 2, pp. 117–123, Apr. 2001. DOI: 10.1007/s002310000131.
  • E. Magyari and A. J. Chamkha, “Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: The full analytical solution,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1821–1828, Sep. 2010. DOI: 10.1016/j.ijthermalsci.2010.04.007.
  • A. J. Chamkha, “Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate,” J. Heat Transf., vol. 119, no. 1, pp. 89–96, Feb. 1997. DOI: 10.1115/1.2824104.
  • A. Wakif, A. Chamkha, I. L. Animasaun, M. Zaydan, H. Waqas and R. Sehaqui, “Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation,” Arab. J. Sci. Eng., vol. 45, no. 11, pp. 9423–9438, Nov. 2020. DOI: 10.1007/s13369-020-04757-3.
  • R. J. Punith Gowda, I. E. Sarris, R. Naveen Kumar, R. Kumar and B. C. Prasannakumara, “A three-dimensional non-newtonian magnetic fluid flow induced due to stretching of the flat surface with chemical reaction,” J. Heat Transf., vol. 144, no. 11, Sep 2022. DOI: 10.1115/1.4055373.
  • Z. Ullah, M. Bilal, I. E. Sarris and A. Hussanan, “MHD and thermal slip effects on viscous fluid over symmetrically vertical heated plate in porous medium: keller box analysis,” Symmetry, vol. 14, no. 11, pp. Art. no. 11, Nov. 2022, DOI: 10.3390/sym14112421.
  • G. Rasool, et al., “Hydrothermal and mass aspects of MHD non-Darcian convective flows of radiating thixotropic nanofluids nearby a horizontal stretchable surface: Passive control strategy,” Case Stud. Therm. Eng., vol. 42, pp. 102654, Feb. 2023. DOI: 10.1016/j.csite.2022.102654.
  • N. A. Shah, et al., “Effect of generalized thermal transport on MHD free convection flows of nanofluids: A generalized Atangana-Baleanu derivative model,” Case Stud. Therm. Eng., vol. 40, pp. 102480, Dec. 2022. DOI: 10.1016/j.csite.2022.102480.
  • K. Guedri, et al., “Insight into the dynamics of second-grade fluid subject to inclined magnetic force, newtonian heating, slip flow, and prabhakar-like fractional kind of newtonian heating,” Int. J. Mod. Phys. B, vol. 36, no. 25, pp. 2250172, Oct. 2022. DOI: 10.1142/S0217979222501727.
  • M. Veera Krishna, N. Ameer Ahamad and A. J. Chamkha, “Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate,” Alexandria Eng. J., vol. 59, no. 2, pp. 565–577, Apr. 2020. DOI: 10.1016/j.aej.2020.01.043.
  • M. VeeraKrishna, G. S. Reddy and A. J. Chamkha, “Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates,” Physics Fluids, vol. 30, no. 2, pp. 023106, Feb. 2018. DOI: 10.1063/1.5010863.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium,” Int. Commun. Heat Mass Transf., vol. 113, pp. 104494, Apr. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104494.
  • M. Veera Krishna, N. Ameer Ahamad and A. J. Chamkha, “Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid,” Alexandria Eng. J., vol. 60, no. 1, pp. 845–858, Feb. 2021. DOI: 10.1016/j.aej.2020.10.013.
  • A. J. Chamkha, “MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects,” Appl. Math. Model., vol. 21, no. 10, pp. 603–609, Oct. 1997. DOI: 10.1016/S0307-904X(97)00084-X.
  • T. R. Mohapatra and A. S. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat Mass Transf., vol. 38, pp. 517–521, 2002.
  • T. V. Davies, “The magnetohydrodynamic boundary layer in the two-dimensional steady flow past a semi-infnite plat plate I, uniform conditions at infinity,” Proc. R. Soc. A, vol. 273, pp. 496–508, 1963.
  • S. S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh and D. D. Ganji, “Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow,” Powder Technol., vol. 322, pp. 428–438, 2017.
  • A. Zaib, U. Khan, I. Khan, A. H. Seikh and E. M. Sherif, “Entropy generation and dual solutions in mixed convection stagnation point flow of micropolar Ti6Al4V nanoparticle along a riga surface,” Processes, vol. 8, no. 14, pp. 1–20, 2020.
  • R. Nazar, N. Amin, D. Filip and I. Pop, “Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet,” Int. J. Eng. Sci, vol. 42, pp. 1241–1253, 2004.
  • A. Ishak, R. Nazar and I. Pop, “Mixed convection boundary layers in the stagnation-point flow towards a stretching vertical sheet,” Meccanica, vol. 41, pp. 509–518, 2006.
  • F. M. Ali, et al., “MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field,” Appl. Math. Mech.-Engl. Ed, vol. 32, pp. 409–418, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.