Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
185
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Heat transfer characteristics of a channel filled with the array of drop-shaped Kagome truss cores

, , , , &
Pages 1-20 | Received 01 Dec 2022, Accepted 05 Feb 2023, Published online: 17 Mar 2023

References

  • J.-C. Han and M. Huh, “Recent studies in turbine blade internal cooling,” Heat Transfer Res., vol. 41, no. 8, pp. 803–828, 2010. DOI: 10.1615/HeatTransRes.v41.i8.30.
  • L. Wang, S. Wang, F. Wen, X. Zhou and Z. Wang, “Effects of continuous wavy ribs on heat transfer and cooling air flow in a square single-pass channel of turbine blade,” Int. J. Heat Mass Transfer, vol. 121, pp. 514–533, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.004.
  • M. K. Chyu and S. C. Siw, “Recent advances of internal cooling techniques for gas turbine airfoils,” J. Therm. Sci. Eng. Appl., vol. 5, no. 2, p. 021008, 2013. DOI: 10.1115/1.4023829.
  • K.-D. C. Do, et al., “Numerical investigation of heat transfer characteristics of pin-fins with roughed endwalls in gas turbine blade internal cooling channels,” Int. J. Heat Mass Transfer, vol. 195, p. 123125, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123125.
  • M. K. Chyu, “Heat transfer and pressure drop for short pin-fin arrays with pin-endwall fillet,” J. Heat Transfer, vol. 112, no. 4, pp. 926–932, 1990. DOI: 10.1115/1.2910502.
  • M. K. Chyu, C. H. Yen and S. Siw, “Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond-shaped elements,” Proc. ASME Turbo Expo., vol. 4, no. PART B, pp. 991–999, 2007. DOI: 10.1115/GT2007-28306.
  • K. K. Mousa and R. Hassanzadeh, “Transient conjugate heat transfer analysis of a cylindrical pin fin made by functionally graded material embedded in the turbulent flow,” Arabian J. Sci. Eng., pp. 1–19, 2022. DOI: 10.1007/s13369-022-07374-4.
  • S. A. Lawson, A. A. Thrift, K. A. Thole and A. Kohli, “Heat transfer from multiple row arrays of low aspect ratio pin fins,” Int. J. Heat Mass Transfer, vol. 54, no. 17, pp. 4099–4109, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.001.
  • L. Ye, X. Yang, B. Sunden and Z. Feng, “Effect of droplet characteristics on heat transfer of mist/air cooling in a pin-finned channel,” Numer. Heat Transfer, Part A, vol. 75, no. 5, pp. 291–308, 2019. DOI: 10.1080/10407782.2019.1586426.
  • A. Maji, D. Bhanja, P. K. Patowari and B. Kundu, “Thermal analysis for heat transfer enhancement in perforated pin fins of various shapes with staggered arrays,” Heat Transfer Eng., vol. 40, no. 3/4, pp. 295–319, 2019. DOI: 10.1080/01457632.2018.1429047.
  • T. A. Schaedler, et al., “Ultralight metallic microlattices,” Science, vol. 334, no. 6058, pp. 962–965, 2011. DOI: 10.1126/science.1211649.
  • Z. G. Qu, T. S. Wang, W. Q. Tao and T. J. Lu, “A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid,” Heat Mass Transfer: Wärme- Und Stoffübertragung, vol. 48, no. 8, pp. 1385–1395, 2012. DOI: 10.1007/s00231-012-0985-y.
  • J. Xiong, et al., “Advanced micro-lattice materials,” Adv. Eng. Mater., vol. 17, no. 9, pp. 1253–1264, 2015. DOI: 10.1002/adem.201400471.
  • H. N. G. Wadley, “Multifunctional periodic cellular metals,” Philos. Trans. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 31–68, 2006. DOI: 10.1098/rsta.2005.1697.
  • D. J. Sypeck and H. N. G. Wadley, “Cellular metal truss core sandwich structures,” Adv. Eng. Mater., vol. 4, no. 10, pp. 759–764, 2002. DOI: 10.1002/1527-2648(20021014)4:10 < 759::AID-ADEM759 > 3.0.CO;2-A.
  • J.-H. Lim and K.-J. Kang, “Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires,” Int. J. Solids Struct., vol. 43, no. 17, pp. 5228–5246, 2006. DOI: 10.1016/j.ijsolstr.2005.07.011.
  • D. T. Queheillalt and H. N. G. Wadley, “Titanium alloy lattice truss structures,” Mater. Des., vol. 30, no. 6, pp. 1966–1975, 2009. DOI: 10.1016/j.matdes.2008.09.015.
  • N. D. Duc, K. Seung-Eock, N. D. Tuan, P. Tran and N. D. Khoa, “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer,” Aerosp. Sci. Technol., vol. 70, pp. 396–404, 2017. DOI: 10.1016/j.ast.2017.08.023.
  • X. Lan, S. Feng, Q. Huang and T. Zhou, “A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores,” Aerosp. Sci. Technol., vol. 87, pp. 37–47, 2019. DOI: 10.1016/j.ast.2019.01.031.
  • T. Kim, H. P. Hodson and T. J. Lu, “Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material,” Int. J. Heat Mass Transfer, vol. 47, no. 6, pp. 1129–1140, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.012.
  • T. Kim, C. Y. Zhao, T. J. Lu and H. P. Hodson, “Convective heat dissipation with lattice-frame materials,” Mech. Mater., vol. 36, no. 8, pp. 767–780, 2004. DOI: 10.1016/j.mechmat.2003.07.001.
  • T. Kim, H. P. Hodson and T. J. Lu, “Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material,” Int. J. Heat Mass Transfer, vol. 48, no. 19, pp. 4243–4264, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.04.026.
  • Y. Ma, H. Yan and G. Xie, “Flow and thermal performance of sandwich panels with plate fins or/and pyramidal lattice,” Appl. Therm. Eng., vol. 164, p. 114468, 2020. DOI: 10.1016/j.applthermaleng.2019.114468.
  • H. B. Yan, Q. C. Zhang, T. J. Lu and T. Kim, “A lightweight X-type metallic lattice in single-phase forced convection,” Int. J. Heat Mass Transfer, vol. 83, pp. 273–283, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.061.
  • H. Yan, X. Yang, T. Lu and G. Xie, “Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core,” Appl. Therm. Eng., vol. 127, pp. 1293–1304, 2017. DOI: 10.1016/j.applthermaleng.2017.08.081.
  • X. Jin, B. Shen, H. Yan, B. Sunden and G. Xie, “Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores,” Int. J. Heat Mass Transfer, vol. 127, no. Part B, pp. 268–282, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.087.
  • H. Yan, et al., “An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance,” Appl. Therm. Eng., vol. 166, p. 114687, 2020. DOI: 10.1016/j.applthermaleng.2019.114687.
  • J.-H. Joo, B.-S. Kang and K.-J. Kang, “Experimental studies on friction factor and heat transfer characteristics through wire-woven bulk Kagome structure,” Exp. Heat Transfer, vol. 22, no. 2, pp. 99–116, 2009. DOI: 10.1080/08916150902718591.
  • J.-H. Joo, K.-J. Kang, T. Kim and T. J. Lu, “Forced convective heat transfer in all metallic wire-woven bulk Kagome sandwich panels,” Int. J. Heat Mass Transfer, vol. 54, no. 25–26, pp. 5658–5662, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.08.018.
  • D. Liang, W. Bai, W. Chen and M. K. Chyu, “Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel,” Int. J. Heat Mass Transfer, vol. 153, p. 119579, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119579.
  • X. Wang, et al., “Effective thermal conductivity and heat transfer characteristics for a series of lightweight lattice core sandwich panels,” Appl. Therm. Eng., vol. 173, p. 115205, 2020. DOI: 10.1016/j.applthermaleng.2020.115205.
  • U. Kemerli and K. Kahveci, “Conjugate forced convective heat transfer in a sandwich panel with a Kagome truss core: The effects of strut length and diameter,” Appl. Therm. Eng., vol. 167, p. 114794, 2020. DOI: 10.1016/j.applthermaleng.2019.114794.
  • S. Hyun, A. M. Karlsson, S. Torquato and A. G. Evans, “Simulated properties of Kagome and tetragonal truss core panels,” Int. J. Solids Struct., vol. 40, no. 25, pp. 6989–6998, 2003. DOI: 10.1016/S0020-7683(03)00350-0.
  • J. Wang, A. G. Evans, K. Dharmasena and H. N. G. Wadley, “On the performance of truss panels with Kagome cores,” Int. J. Solids Struct., vol. 40, no. 25, pp. 6981–6988, 2003. DOI: 10.1016/S0020-7683(03)00349-4.
  • G. Yang, C. Hou, M. Zhao and W. Mao, “Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels,” Sci. Rep., vol. 9, no. 1, p. 3731, 2019. DOI: 10.1038/s41598-019-39704-2.
  • B. Shen, H. Yan, H. Xue and G. Xie, “The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels,” Appl. Therm. Eng., vol. 142, pp. 79–88, 2018. DOI: 10.1016/j.applthermaleng.2018.06.080.
  • B. Shen, Y. Li, H. Yan, S. K. S. Boetcher and G. Xie, “Heat transfer enhancement of wedge-shaped channels by replacing pin fins with Kagome lattice structures,” Int. J. Heat Mass Transfer, vol. 141, pp. 88–101, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.059.
  • S. Parbat, Z. Min, L. Yang and M. Chyu, “Experimental and numerical analysis of additively manufactured Inconel 718 coupons with lattice structure,” J. Turbomach., vol. 142, no. 6, pp. 1–40, 2020. DOI: 10.1115/1.4046527.
  • N. E. Gharbi, A. Kheiri, M. E. Ganaoui and R. Blanchard, “Numerical optimization of heat exchangers with circular and non-circular shapes,” Case Stud. Therm. Eng., vol. 6, no. C, pp. 194–203, 2015. DOI: 10.1016/j.csite.2015.09.006.
  • D. Bouris, E. Konstantinidis, S. Balabani, D. Castiglia and G. Bergeles, “Design of a novel, intensified heat exchanger for reduced fouling rates,” Int. J. Heat Mass Transfer, vol. 48, no. 18, pp. 3817–3832, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.03.026.
  • R. Deeb and D. V. Sidenkov, “Numerical analysis of heat transfer and fluid flow around circular and non-circular tubes,” J. Phys.: Conf. Ser., vol. 2088, no. 1, p. 012008, 2021. DOI: 10.1088/1742-6596/2088/1/012008.
  • L. Xu, et al., “Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels,” Heat Mass Transfer: Wärme- Und Stoffübertragung, vol. 58, no. 1, pp. 41–64, 2022. DOI: 10.1007/s00231-021-03100-2.
  • L. Shui, J. Gao, X. Shi and J. Liu, “Effect of duct aspect ratio on heat transfer and friction in steam-cooled ducts with 60° angled rib turbulators,” Exp. Therm. Fluid Sci., vol. 49, pp. 123–134, 2013. DOI: 10.1016/j.expthermflusci.2013.04.010.
  • L. Gao and Y. G. Sun, “Fluid flow and heat transfer characteristics of composite lattice core sandwich structures,” J. Thermophys. Heat Transfer, vol. 28, no. 2, pp. 258–269, 2014. DOI: 10.2514/1.T4264.
  • L. Gao and Y. G. Sun, “Thermal control of composite sandwich structure with lattice truss cores,” J. Thermophys. Heat Transfer, vol. 29, no. 1, pp. 47–54, 2015. DOI: 10.2514/1.T4361.
  • L. Gao, Y. Sun and L. Cong, “Active cooling performance of all-composite lattice truss core sandwich structure,” Heat Transfer Res., vol. 47, no. 12, pp. 1093–1108, 2016. DOI: 10.1615/HeatTransRes.2016010210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.