Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-objective hydrothermal optimization of nanoparticles shape in nanofluid flow through an annular pipe having metal foam fins

, & ORCID Icon
Pages 21-41 | Received 30 Aug 2022, Accepted 30 Jan 2023, Published online: 17 Mar 2023

References

  • Y. Lin, B. Li, L. Zheng, and G. Chen, “Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper–water nanofluid driven by an exponential temperature,” Powder Technol., vol. 301, pp. 379–386, 2016. DOI: 10.1016/j.powtec.2016.06.029.
  • A. Trodi and M. E. H. Benhamza, “Particle shape and aspect ratio effect of Al2O3–water nanofluid on natural convective heat transfer enhancement in differentially heated square enclosures,” Chem. Eng. Commun., vol. 204, no. 2, pp. 158–167, 2017. DOI: 10.1080/00986445.2016.1246437.
  • J. Raza, F. Mebarek-Oudina, and A. J. Chamkha, “Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects,” MMMS, vol. 15, no. 4, pp. 737–757, 2019. DOI: 10.1108/MMMS-07-2018-0133.
  • A. H. Ghobadi and M. G. Hassankolaei, “A numerical approach for MHD Al2O3–TiO2/H2O hybrid nanofluids over a stretching cylinder under the impact of shape factor,” Heat Transf., vol. 48, pp. 4262–4282, 2019. DOI: 10.1002/htj.21591.
  • M. M. Elias et al., “Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger,” Int. Commun. Heat Mass Transf., vol. 44, pp. 93–99, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.03.014.
  • O. Mahian, A. Kianifar, S. Z. Heris, and S. Wongwises, “First and second laws analysis of a minichannel–based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials,” Int. J. Heat Mass Transf., vol. 78, pp. 1166–1176, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.009.
  • J. Raza, A. M. Rohni, and Z. Omar, “Numerical investigation of copper–water (Cu–water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: Slip effects,” Math. Comput. Appl., vol. 21, pp. 43, 2016. DOI: 10.3390/mca21040043.
  • M. Sabour, M. Ghalambaz, and A. Chamkha, “Natural convection of nanofluids in a cavity: Criteria for enhancement of nanofluids,” HFF, vol. 27, no. 7, pp. 1504–1534, 2017. DOI: 10.1108/HFF-12-2015-0516.
  • I. Khan, “Shape effects of MoS2 nanopartilces on MHD slip flow of molybdenum disulphide nanofluid in a porous medium,” J. Mol. Liq., vol. 233, pp. 442–451, 2017. DOI: 10.1016/j.molliq.2017.03.009.
  • J. Alsarraf et al., “Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two–phase mixture model,” Phys. A, vol. 520, pp. 275–288, 2019. DOI: 10.1016/j.physa.2019.01.021.
  • A. A. A. A. Al-Rashed et al., “Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect,” Phys.A, vol. 521, pp. 724–736, 2019. DOI: 10.1016/j.physa.2019.01.106.
  • T. A. Alkanhal et al., “Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source,” Int. J. Heat Mass Transf., vol. 139, pp. 87–94, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.006.
  • S. Shaiq, E. Maraj, and Z. Iqbal, “A comparative analysis of shape factor and thermophysical properties of electrically conducting nanofluids TiO2–EG and Cu–EG towards stretching cylinder,” Chaos Solitons Fract., vol. 118, pp. 290–299, 2019. DOI: 10.1016/j.chaos.2018.11.032.
  • S. S. Ghadikolaei, M. Gholinia, M. E. Hoseini, and D. D. Ganji, “Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2–H2O hybrid base fluid with thermal radiation,” Taiwan Inst. Chem. Eng., vol. 97, pp. 12–23, 2019. DOI: 10.1016/j.jtice.2019.01.028.
  • A. Shahsavar, Z. Rahimi, and H. Salehipour, “Nanoparticle shape effects on thermal–hydraulic performance of boehmite alumina nanofluid in a horizontal double–pipe minichannel heat exchanger,” Heat Mass Transf., vol. 55, no. 6, pp. 1741–1751, 2019. DOI: 10.1007/s00231–018–02558–x.
  • F. Selimefendigil, H. F. Öztop, and A. J. Chamkha, “MHD mixed convection of nanofluid in a cubic cavity with a conductive partition for various nanoparticle shapes,” HFF, vol. 29, no. 10, pp. 3584–3610, 2019. DOI: 10.1108/HFF-04-2018-0176.
  • T. K. Nguyen et al., “Heat transfer of ethylene glycol–Fe3O4 nanofluid enclosed by curved porous cavity including electric field,” Phys. A, vol. 550, pp. 123945, 2020. DOI: 10.1016/j.physa.2019.123945.
  • A. Shahsavar, M. Rashidi, M. M. Mosghani, D. Toghraie, and P. Talebizadehsardari, “A numerical investigation on the influence of nanoadditive shape on the natural convection and entropy generation inside a rectangle–shaped finned concentric annulus filled with boehmite alumina nanofluid using two–phase mixture model,” J. Therm. Anal. Calorim., vol. 141, no. 2, pp. 915–930, 2020. DOI: 10.1007/s10973–019–09076–w.
  • M. Bahiraei and A. Monavari, “Thermohydraulic characteristics of a micro plate heat exchanger operated with nanofluid considering different nanoparticle shapes,” Appl. Therm. Eng., vol. 179, pp. 115621, 2020. DOI: 10.1016/j.applthermaleng.2020.115621.
  • U. Rashid et al., “Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder,” Res. Phys., vol. 21, pp. 103812, 2021. DOI: 10.1016/j.rinp.2020.103812.
  • M. Bahiraei, M. Naseri, and A. Monavari, “Thermal–hydraulic performance of a nanofluid in a shell–and–tube heat exchanger equipped with new trapezoidal inclined baffles: Nanoparticle shape effect,” Powder Technol., vol. 395, pp. 348–359, 2022. DOI: 10.1016/j.powtec.2021.09.009.
  • A. Shahsavar, K. Moradi, C. Yildiz, P. Farhadi, and M. Arici, “Effect of nanoparticle shape on cooling performance of boehmite–alumina nanofluid in a helical heat sink for laminar and turbulent flow regimes,” Int. J. Mech. Sci., vol. 217, pp. 107045, 2022. DOI: 10.1016/j.ijmecsci.2021.107045.
  • I. Zahmatkesh et al., “Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review,” J. Mol. Liq., vol. 321, pp. 114430, 2021. DOI: 10.1016/j.molliq.2020.114430.
  • T. S. Kumar, P. A. Dinesh, S. B. Ramakrishna, and A. S. Reddy, “Numerical study of moving fin with thermal properties,” Heat Trans., vol. 51, no. 6, pp. 5623–5634, 2022. DOI: 10.1002/htj.22562.
  • M. Selvan, M. S. A. Aziz, M. S. Nurulakmal, H. P. Ong, and C. Y. Khor, “Numerical study on the effect of fin length variation on the thermal performance of a bus duct conductor,” Numer. Heat Transf. Part A, vol. 83, no. 2, pp. 116–133, 2023. DOI: 10.1080/10407782.2022.2083892.
  • S. Kim, J. Paek, and B. Kang, “Flow and heat transfer correlations for porous fin in a plate–fin heat exchanger,” J. Heat Transf., vol. 122, no. 3, pp. 572–578, 2000. DOI: 10.1115/1.1287170.
  • B. I. Pavel and A. A. Mohammad, “Experimental investigation of the potential of metallic porous inserts in enhancing forced convective heat transfer,” J. Heat Transf., vol. 126, no. 4, pp. 540–545, 2004. DOI: 10.1115/1.1773586.
  • W. Hsieh, J. Wu, W. Shih, and W. Chiu, “Experimental investigation of heat–transfer characteristics of aluminum–foam heat sinks,” Int. J. Heat Mass Transf., vol. 47, no. 23, pp. 5149–5157, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.04.037.
  • C. T’Joen et al., “Thermo–hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes,” Int. J. Heat Mass Transf., vol. 53, no. 1516, pp. 3262–3274, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.055.
  • H. Y. Li, K. C. Leong, L. W. Jin, and J. C. Chai, “Analysis of fluid flow and heat transfer in a channel with staggered porous blocks,” Int. J. Therm. Sci., vol. 49, no. 6, pp. 950–962, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.006.
  • M. Siavashi, H. R. T. Bahrami, and H. Saffari, “Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two–phase mixture model,” Energy, vol. 93, pp. 2451–2466, 2015. DOI: 10.1016/j.energy.2015.10.100.
  • A. Chumpia and K. Hooman, “Performance evaluation of tubular aluminum foam heat exchangers in single row arrays,” Appl. Therm. Eng., vol. 83, pp. 121–130, 2015. DOI: 10.1016/j.applthermaleng.2015.03.015.
  • S. Q. Hussien and A. A. Farhan, “The effect of metal foam fins on the thermo–hyraulic performance of a solar air heater,” Int. J. Renew. Energy Res., vol. 9, pp. 840–847, 2019.
  • M. Ghalambaz and J. Zhang, “Conjugate solid–liquid phase change heat transfer in heatsink filled with phase change material–metal foam,” Int. J. Heat Mass Transf., vol. 146, pp. 118832, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118832.
  • M. Esmaeili, M. Karami, and S. Delfani, “Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid,” Int. J. Energy Res., vol. 44, no. 7, pp. 5527–5544, 2020. DOI: 10.1002/er.5305.
  • S. Bazkhane and I. Zahmatkesh, “Taguchi–based sensitivity analysis of hydrodynamics and heat transfer of nanofluids in a microchannel heat sink (MCHS) having porous substrates,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104885, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104885.
  • M. Lori and K. Vafai, “Thermal and hydraulic performance of rectangular microchannel heat sinks with trapezoidal porous configuration,” Numer. Heat Transf. Part A, vol. 81, no. 36, pp. 72–93, 2022. DOI: 10.1080/10407782.2022.2038969.
  • P. Kumar and K. M. Pandey, “Numerical investigation of thermo–hydraulic transport characteristics of two–dimensional, steady flow through partially porous wavy channel,” Numer. Heat Transf. Part A, vol. 81, no. 12, pp. 31–47, 2022. DOI: 10.1080/10407782.2021.1969809.
  • T. C. Sushma, N. Nalinakshi, P. A. Dinesh, D. V. Jayalakshmamma, and T. S. Kumar, “Convective heat transfer and MHD flow through semi–porous cylindrical filters embedded in an impermeable region,” Chin. J. Phys., vol. 81, pp. 9–25, 2023. DOI: 10.1016/j.cjph.2022.10.015.
  • S. Ferrouillat, A. Bontemps, J. P. Ribeiro, J. A. Gruss, and O. Soriano, “Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions,” Int. J. Heat Fluid Flow, vol. 32, no. 2, pp. 424–439, 2011. DOI: 10.1016/j.ijheatfluidflow.2011.01.003.
  • G. Roy, I. Gherasim, F. Nadeau, G. Poitras, and C. T. Nguyen, “Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows,” Int. J. Therm. Sci., vol. 58, pp. 120–129, 2012. DOI: 10.1016/j.ijthermalsci.2012.03.009.
  • M. H. Esfe, O. Mahian, M. H. Hajmohammad, and S. Wongwises, “Design of a heat exchanger working with organic nanofluids using multi–objective particle swarm optimization algorithm and response surface method,” Int. J. Heat Mass Transf., vol. 119, pp. 922–930, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.009.
  • A. Ebrahimi-Moghadam, S. Kowsari, F. Farhadi, and M. Deymi–Dashtebayaz, “Thermohydraulic sensitivity analysis and multi-objective optimization of Fe3O4/H2O nanofluid flow inside U-bend heat exchangers with longitudinal strip inserts,” Appl. Therm. Eng., vol. 164, pp. 114518, 2020. DOI: 10.1016/j.applthermaleng.2019.114518.
  • H. Nemati, M. A. Moghimi, P. Sapin, and C. N. Markides, “Shape optimisation of air–cooled finned–tube heat exchangers,” Int. J. Therm. Sci., vol. 150, pp. 106233, 2020. DOI: 10.1016/j.ijthermalsci.2019.106233.
  • H. Nemati, M. A. Moghimi, and J. P. Meyer, “Shape optimisation of wavy mini–channel heat sink,” Int. Commun. Heat Mass Transf., vol. 122, pp. 105172, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105172.
  • N. Bianco, M. Iasiello, G. M. Mauro, and L. Pagano, “Multi–objective optimization of finned metal foam heat sinks: Tradeoff between heat transfer and pressure drop,” Appl. Therm. Eng., vol. 182, pp. 116058, 2021. DOI: 10.1016/j.applthermaleng.2020.116058.
  • S. M. Javadpour, E. A. J. Abadi, O. A. Akbari, and M. Goharimanesh, “Optimization of geometry and nano–fluid properties on microchannel performance using Taguchi method and genetic algorithm,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104952, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104952.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, Unabridged. New York: Dover, 1954.
  • E. V. Timofeeva, J. L. Routbort, and D. Singh, “Particle shape effects on thermophysical properties of alumina nanofluids,” J. Appl. Phys., vol. 106, no. 1, pp. 014304, 2009. DOI: 10.1063/1.3155999.
  • O. Mahian et al., “Recent advances in modeling and simulation of nanofluid flows–Part I: Fundamental and theory,” Phys. Rep., vol. 790, pp. 1–48, 2019. DOI: 10.1016/j.physrep.2018.11.004.
  • M. H. Esfe, H. Rostamian, D. Toghraie, M. Hekmatifar, and A. T. K. Abad, “Numerical study of heat transfer of U–shaped enclosure containing nanofluids in a porous medium using two–phase mixture method,” Case Stud. Therm. Eng., vol. 38, pp. 102150, 2022. DOI: 10.1016/j.csite.2022.102150.
  • M. Manninen, V. Taivassalo, and S. Kallio, On the Mixture Model for Multiphase Flow. Finland: Technical Research Center of Finland, 1996.
  • A. H. Seikh et al., “Enactment of implicit two-step Obrechkoff-type block method on unsteady sedimentation analysis of spherical particles in Newtonian fluid media,” J. Mol. Liq., vol. 293, pp. 111416, 2019. DOI: 10.1016/j.molliq.2019.111416.
  • L. Schiller and A. Naumann, “A drag coefficient correlation,” Z. Ver. Dtsch. Ing., vol. 77, pp. 318–320, 1935.
  • E. Torshizi and I. Zahmatkesh, “Comparison between single-phase, two-phase mixture and Eulerian–Eulerian models for the description of jet impingement of nanofluids,” J. Appl. Comput. Sci. Mech., vol. 27, pp. 55–70, 2016. DOI: 10.22067/FUM_MECH.V27I2.41797.
  • I. Zahmatkesh and S. A. Naghedifar, “Oscillatory mixed convection in jet impingement cooling of a horizontal surface immersed in a nanofluid-saturated porous medium,” Numer. Heat Transf. Part A, vol. 72, no. 5, pp. 401–416, 2017. DOI: 10.1080/10407782.2017.1376961.
  • M. R. Habibi and I. Zahmatkesh, “Double–diffusive natural and mixed convection of binary nanofluids in porous cavities,” J. Por. Media, vol. 23, no. 10, pp. 955–967, 2020. DOI: 10.1615/JPorMedia.2020027144.
  • I. Zahmatkesh and M. R. H. Shandiz, “MHD double-diffusive mixed convection of binary nanofluids through a vertical porous annulus,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1793–1807, 2022. DOI: 10.1007/s10973–020–10439–x.
  • A. A. Al-Rashed et al., “Numerical assessment into the hydrothermal and entropy generation characteristics of biological water–silver nano-fluid in a wavy walled microchannel heat sink,” Int. Commun. Heat Mass Transf., vol. 104, pp. 118–126, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.03.007.
  • H. Nemati, V. Souriaee, M. Habibi, and K. Vafai, “Design and Taguchi-based optimization of the latent heat thermal storage in the form of structured porous-coated pipe,” Energy, vol. 263B, pp. 125947, 2023. DOI: 10.1016/j.energy.2022.125947.
  • K. Gelis, K. Ozbek, O. Ozyurt, and A. N. Celik, “Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach,” Appl. Therm. Eng., vol. 219B, pp. 119609, 2023. DOI: 10.1016/j.applthermaleng.2022.119609.
  • A. Falahat, “Sensitivity analysis of boehmite alumina nanofluid in a novel cylindrical heat sink with hybrid helical-straight minichannels using the Taguchi method and statistical analysis,” Int. J. Therm. Sci., vol. 185, pp. 108035, 2023. DOI: 10.1016/j.ijthermalsci.2022.108035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.