Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced thermal performance of the solidification process of nanopowder-phase change material-based latent thermal unit: Heat management

ORCID Icon, & ORCID Icon
Pages 60-75 | Received 29 Sep 2022, Accepted 01 Feb 2023, Published online: 16 Mar 2023

References

  • C. Haiyun, H. Zhixiong, S. Yüksel and H. Dinçer, “Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach,” Renew. Sustain. Energy Rev., vol. 143, pp. 110844, 2021. DOI: 10.1016/j.rser.2021.110844.
  • Y. Wang, Z. Quan, H. Jing, L. Wang and Y. Zhao, “Performance and operation strategy optimization of a new dual-source building energy supply system with heat pumps and energy storage,” Energy Convers. Manag., vol. 239, pp. 114204, 2021. DOI: 10.1016/j.enconman.2021.114204.
  • M. Junginger, A. Faaij, R. Van Den Broek, A. Koopmans and W. Hulscher, “Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in Northeastern Thailand,” Biomass Bioenergy, vol. 21, pp. 259–275, 2001. DOI: 10.1016/S0961-9534(01)00034-4.
  • X. J. Luo and K. F. Fong, “Development of integrated demand and supply side management strategy of multi-energy system for residential building application,” Appl. Energy, vol. 242, pp. 570–587, 2019. DOI: 10.1016/j.apenergy.2019.03.149.
  • G. Le Treut, J. Lefèvre, F. Lallana and G. Bravo, “The multi-level economic impacts of deep decarbonization strategies for the energy system,” Energy Policy, vol. 156, pp. 112423, 2021. DOI: 10.1016/j.enpol.2021.112423.
  • L. F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers and O. Zubillaga, “Use of microencapsulated PCM in concrete walls for energy savings,” Energy Build, vol. 39, pp. 113–119, 2007. DOI: 10.1016/j.enbuild.2006.03.030.
  • M. Akrami, et al., “Towards a sustainable greenhouse: Review of trends and emerging practices in analysing greenhouse ventilation requirements to sustain maximum agricultural yield,” Sustain, vol. 12, pp. 1–18, 2020. DOI: 10.3390/su12072794.
  • J. Luo, D. Zou, Y. Wang, S. Wang and L. Huang, “Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review,” Chem. Eng. J., vol. 430, pp. 132741, 2022. DOI: 10.1016/j.cej.2021.132741.
  • C. A. Ikutegbe and M. M. Farid, “Application of phase change material foam composites in the built environment: A critical review,” Renew. Sustain. Energy Rev., vol. 131, pp. 110008, 2020. DOI: 10.1016/j.rser.2020.110008.
  • G. Murali, G. S. N. Sravya, J. Jaya and V. N. Vamsi, “A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM," Renew,” Sustain. Energ. Rev., vol. 150, pp. 111513, 2021. DOI: 10.1016/j.rser.2021.111513.
  • W. Hua, L. Zhang and X. Zhang, “Research on passive cooling of electronic chips based on PCM: A review,” J. Mol. Liq., vol. 340, pp. 117183, 2021. DOI: 10.1016/j.molliq.2021.117183.
  • C. Guo and W. Zhang, “Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system,” Energy Convers. Manag., vol. 49, pp. 919–927, 2008. DOI: 10.1016/j.enconman.2007.10.025.
  • J. M. Mahdi, S. Lohrasbi, D. D. Ganji and E. C. Nsofor, “Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger,” Int. J. Heat Mass Transf., vol. 124, pp. 663–676, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.095.
  • H. Wei and X. Li, “Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity,” Sol. Energy Mater. Sol. Cell., vol. 166, pp. 1–8, 2017. DOI: 10.1016/j.solmat.2017.03.003.
  • Y. Fu, Z. He, D. Mo and S. Lu, “Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives,” Int. J. Therm. Sci., vol. 86, pp. 276–283, 2014. DOI: 10.1016/j.ijthermalsci.2014.07.011.
  • S. Seddegh, X. Wang, A. D. Henderson and Z. Xing, “Solar domestic hot water systems using latent heat energy storage medium: A review,” Renew. Sustain. Energy Rev., vol. 49, pp. 517–533, 2015. DOI: 10.1016/j.rser.2015.04.147.
  • Y. Hasadi and J. M. Khodadadi, “Numerical simulation of solidification of colloids inside a differentially heated cavity,” J. Heat Transfer., vol. 137, pp. 072301, 2015. DOI: 10.1115/1.4029035.
  • H. Senobar, M. Aramesh and B. Shabani, “Nanoparticles and metal foams for heat transfer enhancement of phase change materials: A comparative experimental study,” J. Energy Storage, vol. 32, pp. 101911, 2020. DOI: 10.1016/j.est.2020.101911.
  • C. J. Ho and J. Y. Gao, “Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material,” Int. Commun. Heat Mass Transf., vol. 36, pp. 467–470, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.01.015.
  • S. A. Nada, D. H. El-Nagar and H. M. S. Hussein, “Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles,” Energy Convers. Manag., vol. 166, pp. 735–743, 2018. DOI: 10.1016/j.enconman.2018.04.035.
  • I. Zarma, M. Ahmed and S. Ookawara, “Enhancing the performance of concentrator photovoltaic systems using Nanoparticle-phase change material heat sinks,” Energy Convers. Manag., vol. 179, pp. 229–242, 2019. DOI: 10.1016/j.enconman.2018.10.055.
  • H. Q. Jin, L. W. Fan, M. J. Liu, Z. Q. Zhu and Z. T. Yu, “A pore-scale visualized study of melting heat transfer of a paraffin wax saturated in a copper foam: Effects of the pore size,” Int. J. Heat Mass Transf., vol. 112, pp. 39–44, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.114.
  • Z. A. Qureshi, E. Elnajjar, O. Al-Ketan, R. A. Al-Rub and S. B. Al-Omari, “Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS),” Int. J. Heat Mass Transf., vol. 170, pp. 121001, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121001.
  • Q. Ren, Y. L. He, K. Z. Suand and C. L. Chan, “Investigation of the effect of metal foam characteristics on the PCM melting performance in a latent heat thermal energy storage unit by pore-scale lattice Boltzmann modeling,” Numer. Heat Transf. Part A Appl., vol. 72, pp. 745–764, 2017. DOI: 10.1080/10407782.2017.1412224.
  • Y. Shiina and T. Inagaki, “Study on the efficiency of effective thermal conductivities on melting characteristics of latent heat storage capsules,” Int. J. Heat Mass Transf., vol. 48, pp. 373–383, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.07.043.
  • F. Agyenim, P. Eames and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy, vol. 83, pp. 1509–1520, 2009. DOI: 10.1016/j.solener.2009.04.007.
  • U. Stritih, “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transf., vol. 47, pp. 2841–2847, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.02.001.
  • R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber and K. Schwarzer, “Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit,” Sol. Energy, vol. 60, pp. 281–290, 1997. DOI: 10.1016/S0038-092X(96)00167-3.
  • T. Bauer, “Approximate analytical solutions for the solidification of PCMs in fin geometries using effective thermophysical properties,” Int. J. Heat Mass Transf., vol. 54, pp. 4923–4930, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.004.
  • B. Lu, Y. Zhang, D. Sun, Z. Yuan and S. Yang, “Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit,” Appl. Therm. Eng., vol. 187, pp. 116575, 2021. DOI: 10.1016/j.applthermaleng.2021.116575.
  • V. Shatikian, G. Ziskind and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins: Constant heat flux,” Int. J. Heat Mass Transf., vol. 51, pp. 1488–1493, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.036.
  • V. Shatikian, G. Ziskind and R. Letan, “Numerical investigation of a PCM-based heat sink with internal fins,” Int. J. Heat Mass Transf., vol. 48, pp. 3689–3706, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.10.042.
  • J. Giro-Paloma, M. Martínez, L. F. Cabeza and A. I. Fernández, “Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1059–1075, 2016. DOI: 10.1016/j.rser.2015.09.040.
  • A. Yataganbaba, B. Ozkahraman and I. Kurtbas, “Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015),” Appl. Energy, vol. 185, pp. 720–731, 2017. DOI: 10.1016/j.apenergy.2016.10.107.
  • Y. E. Milián, A. Gutiérrez, M. Grágeda and S. Ushak, “A review on encapsulation techniques for inorganic phase change materials and the in fl uence on their thermophysical properties,” Renew. Sustain. Energy Rev., vol. 73, pp. 983–999, 2017. DOI: 10.1016/j.rser.2017.01.159.
  • M. R. Hajizadeh, E. Abohamzeh, A. K. Tiwari, M. A. Sheremet, Z. Li and Q. V. Bach, “Discharging of PCM for ventilation system incorporating nanoparticles,” J. Mol. Liq., vol. 315, pp. 113696, 2020. DOI: 10.1016/j.molliq.2020.113696.
  • A. N. Keshteli and M. Sheikholeslami, “Influence of Al2O3 nanoparticle and Y-shaped fins on melting and solidification of paraffin,” J. Mol. Liq., vol. 314, pp. 113798, 2020. DOI: 10.1016/j.molliq.2020.113798.
  • M. Khatibi, R. Nemati-Farouji, A. Taheri, A. Kazemian, T. Ma and H. Niazmand, “Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units,” J. Energy Storage, vol. 33, pp. 102055, 2021. DOI: 10.1016/j.est.2020.102055.
  • J. M. Mahdi and E. C. Nsofor, “Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system,” Appl. Therm. Eng., vol. 108, pp. 596–604, 2021. DOI: 10.1016/j.applthermaleng.2016.07.130.
  • D. C. Hyun, N. S. Levinson, U. Jeong and Y. Xia, “Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks,” Angew. Chem. Int. Ed. Engl., vol. 53, pp. 3780–3795, 2014. DOI: 10.1002/anie.201305201.
  • M. M. Farid, A. M. Khudhair, S. A. K. Razack and S. Al-Hallaj, “A review on phase change energy storage: Materials and applications,” Energy Convers. Manag., vol. 45, pp. 1597–1615, 2004. DOI: 10.1016/j.enconman.2003.09.015.
  • F. Agyenim, N. Hewitt, P. Eames and M. Smyth, “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS),” Renew. Sustain. Energy Rev., vol. 14, pp. 615–628, 2004. DOI: 10.1016/j.rser.2009.10.015.
  • Z. Khan, Z. A. Khan and P. Sewell, “Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application,” Int. J. Heat Mass Transf., vol. 144, pp. 118619, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118619.
  • A. Chibani and S. Merouani, “Acceleration of heat transfer and melting rate of a phase change material by nanoparticles addition at low Concentrations,” Int. J. Thermophys., vol. 42, pp. 1–16, 2019. DOI: 10.1007/s10765-021-02822-z.
  • J. M. Mahdi and E. C. Nsofor, “Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins,” Appl. Energ., vol. 211, pp. 975–986, 2018. DOI: 10.1016/j.apenergy.2017.11.082.
  • A. Chibani, S. Merouani and F. Benmoussa, “Computational analysis of the melting process of Phase change material-metal foam-based latent thermal energy storage unit: The heat exchanger configuration,” J. Energy Storage, vol. 42, pp. 103071, 2021. DOI: 10.1016/j.est.2021.103071.
  • B. Kok, “Examining effects of special heat transfer fins designed for the melting process of PCM and Nano-PCM,” Appl. Therm. Eng., vol. 170, pp. 114989, 2020. DOI: 10.1016/j.applthermaleng.2020.114989.
  • I. Sarani, S. Payan, S. A. Nada and A. Payan, “Numerical investigation of an innovative discontinuous distribution of fins for solidification rate enhancement in PCM with and without nanoparticles,” Appl. Therm. Eng., vol. 176, pp. 115017, 2020. DOI: 10.1016/j.applthermaleng.2020.115017.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman and A. T. Mohammad, “Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins,” Int. J. Heat Mass Transf., vol. 61, pp. 684–695, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.02.030.
  • A. Valan Arasu, A. P. Sasmito and A. S. Mujumdar, “Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles - A numerical study,” Front. Heat Mass Transf., vol. 2, pp. 043005, 2019. DOI: 10.5098/hmt.v2.4.3005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.