Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
91
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Combined effects of thermo-diffusion, diffusion-thermo and internal heat generation on the stabilization/destabilization of the flow in a cavity differentially heated and salted

, , , , , & show all
Pages 92-113 | Received 16 Aug 2022, Accepted 06 Feb 2023, Published online: 28 Feb 2023

References

  • H. Stommel, A. B. Arons and D. Blanchard, “An oceanographical curiosity: the perpetual salt fountain,” Deep Sea Res., vol. 3, no. 2, pp. 152–153, Feb. 1956. DOI: 10.1016/0146-6313(56)90095-8.
  • L. Cheng, et al., “Improved estimates of changes in upper ocean salinity and the hydrological cycle,” J. Clim., vol. 33, no. 23, pp. 10357–10381, Dec. 2020. DOI: 10.1175/JCLI-D-20-0366.1.
  • Y. Liu, et al., “How well do CMIP6 and CMIP5 models simulate the climatological seasonal variations in ocean salinity,” Adv. Atmos. Sci., vol. 39, no. 10, pp. 1650–1672, Oct. 2022. DOI: 10.1007/s00376-022-1381-2.
  • C. F. Chen and D. H. Johnson, “Double-diffusive convection: a report on an engineering foundation conference,” J. Fluid Mech., vol. 138, pp. 405–416, Apr. 1984. DOI: 10.1017/S0022112084000173.
  • A. E. Mansouri, M. Hasnaoui, R. Bennacer and A. Amahmid, “Transient thermal performances of a salt gradient solar pond under semi-arid Moroccan climate using a 2D double-diffusive convection model,” Energy Convers. Manag., vol. 151, pp. 199–208, Nov. 2017. DOI: 10.1016/j.enconman.2017.08.093.
  • O. V. Trevisan and A. Bejan, “Natural convection with combined heat and mass transfer buoyancy effects in a porous medium,” Int. J. Heat Mass Transf., vol. 28, no. 8, pp. 1597–1611, Aug. 1985. DOI: 10.1016/0017-9310(85)90261-3.
  • F. Alavyoon, Y. Masuda and S. Kimura, “On natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls,” Int. J. Heat Mass Transf., vol. 37, no. 2, pp. 195–206, Jan. 1994. DOI: 10.1016/0017-9310(94)90092-2.
  • M. Mamou, P. Vasseur and E. Bilgen, “Multiple solutions for double-diffusive convection in a vertical porous enclosure,” Int. J. Heat Mass Transf., vol. 38, no. 10, pp. 1787–1798, Jul. 1995. DOI: 10.1016/0017-9310(94)00301-B.
  • M. Karimi-Fard, M. C. Charrier-Mojtabi and K. Vafai, “Non-Darcian e-ects on double-di-usive convection within a porous medium,” Numer. Heat Transf. Part A Appl., vol. 31, no. 8, pp. 837–852, Jun. 1997. DOI: 10.1080/10407789708914067.
  • T. Nishimura, M. Wakamatsu and A. M. Morega, “Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients,” Int. J. Heat Mass Transf., vol. 41, no. 11, pp. 1601–1611, Jun. 1998. DOI: 10.1016/S0017-9310(97)00271-8.
  • A. Amahmid, M. Hasnaoui, M. Mamou and P. Vasseur, “Boundary layer flows in a vertical porous enclosure induced by opposing buoyancy forces,” Int. J. Heat Mass Transf., vol. 42, no. 19, pp. 3599–3608, Oct. 1999. DOI: 10.1016/S0017-9310(99)00019-8.
  • D. A. Nield, “Onset of Thermohaline convection in a porous medium,” Water Resour. Res., vol. 4, no. 3, pp. 553–560, Jun. 1968. DOI: 10.1029/WR004i003p00553.
  • B. T. Murray and C. F. Chen, “Double-diffusive convection in a porous medium,” J. Fluid Mech., vol. 201, no. 1, pp. 147–166, Apr. 1989. DOI: 10.1017/S002211208900087X.
  • O. V. Trevisan and A. Bejan, “Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below,” Int. J. Heat Mass Transf., vol. 30, no. 11, pp. 2341–2356, Nov. 1987. DOI: 10.1016/0017-9310(87)90226-2.
  • F. Chen and C. F. Chen, “Double-diffusive fingering convection in a porous medium,” Int. J. Heat Mass Transf., vol. 36, no. 3, pp. 793–807, Feb. 1993. DOI: 10.1016/0017-9310(93)80055-Y.
  • A. Amahmid, M. Hasnaoui, M. Mamou and P. Vasseur, “Double-diffusive parallel flow induced in a horizontal Brinkman porous layer subjected to constant heat and mass fluxes: analytical and numerical studies,” Heat Mass Transf., vol. 35, no. 5, pp. 409–421, Oct. 1999. DOI: 10.1007/s002310050343.
  • S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. Cambridge, England: Cambridge University Press, 1952,
  • V. Shevtsova, “IVIDIL experiment onboard the ISS,” Adv. Sp. Res., vol. 46, no. 5, pp. 672–679, Sep. 2010. DOI: 10.1016/j.asr.2010.04.001.
  • K. Clusius and G. Dickel, “New process for separation of gas mixtures and isotopes,” Naturwissenschaften, vol. 26, no. 33, pp. 546–546, Aug. 1938. DOI: 10.1007/BF01675498.
  • J. K. Platten, M. M. Bou-Ali and J. F. Dutrieux, “Enhanced molecular separation in inclined thermogravitational columns,” J. Phys. Chem. B, vol. 107, no. 42, pp. 11763–11767, Oct. 2003. DOI: 10.1021/jp034780k.
  • B. Elhajjar, M. C. Charrier-Mojtabi and A. Mojtabi, “Separation of a binary fluid mixture in a porous horizontal cavity,” Phys. Rev. E, vol. 77, no. 2, pp. 026310, Feb. 2008. DOI: 10.1103/PhysRevE.77.026310.
  • A. Martin, M. M. Bou-Ali, H. Barrutia and D. Alonso de Mezquia, “Microfluidic separation process by the Soret effect in biological fluids,” C. R. Mecanique, vol. 339, no. 5, pp. 342–348, May 2011. DOI: 10.1016/j.crme.2011.03.012.
  • A. Abbasi, M. Z. Saghir and M. Kawaji, “Study of thermodiffusion of carbon dioxide in binary mixtures of n-butane & carbon dioxide and ndodecane & carbon dioxide in porous media,” Int. J. Therm. Sci., vol. 50, no. 2, pp. 124–132, Feb. 2011. DOI: 10.1016/j.ijthermalsci.2010.10.009.
  • E. Blums and S. Odenbach, “Thermophoretic separation of ultrafine particles in ferrofluids in thermal diffusion column under the effect of an MHD convection,” Int. J. Heat Mass Transf., vol. 43, no. 9, pp. 1637–1649, May 2000. DOI: 10.1016/S0017-9310(99)00224-0.
  • A. Rtibi, M. Hasnaoui and A. Amahmid, “Analytico-numerical study of optimal separation of species in an inclined Darcy–Brinkman porous cavity saturated with a binary mixture,” Acta Astronaut., vol. 98, pp. 71–85, May 2014. DOI: 10.1016/j.actaastro.2014.01.012.
  • B. Chandra Shekar and N. Kishan, “Soret and Dufour effects on free convective heat and solute transfer in fluid saturated inclined porous cavity,” Eng. Sci. Technol. Int. J., vol. 18, no. 4, pp. 543–554, Dec. 2015. DOI: 10.1016/j.jestch.2015.04.001.
  • B. Chandra Shekar, N. Kishan and A. J. Chamkha, “Soret and Dufour effects on MHD natural convective heat and solute transfer in a fluid-saturated porous cavity,” J. Por. Media, vol. 19, no. 8, pp. 669–686, Dec. 2016. DOI: 10.1615/JPorMedia.v19.i8.20.
  • S. Bettaibi, F. Kuznik, E. Sediki and S. Succi, “Numerical study of thermal diffusion and diffusion thermo effects in a differentially heated and salted driven cavity using MRT-lattice boltzmann finite difference model,” Int. J. Appl. Mech., vol. 13, no. 04, pp. 2150049, Jun. 2021. DOI: 10.1142/S1758825121500496.
  • J. Large and A. Pesyridis, “Investigation of micro gas turbine systems for high speed long loiter tactical unmanned Air systems,” Aerospace, vol. 6, no. 5, pp. 55, May 2019. DOI: 10.3390/aerospace6050055.
  • M. El Hossaini, “Review of the new combustion technologies in modern gas turbines,” in Progress in Gas Turbine Performance, Norderstedt, Germany: BoD–Books on Demand, 2013. DOI: 10.5772/54403.
  • Y. Ju and K. Maruta, “Microscale combustion: technology development and fundamental research,” Prog. Energy Combust. Sci., vol. 37, no. 6, pp. 669–715, Dec. 2011. DOI: 10.1016/j.pecs.2011.03.001.
  • Y. Nakamura, J. Gao and T. Matsuoka, “Progress in small-scale combustion,” J. Therm. Sci. Technol., vol. 12, no. 1, pp. JTST0001–JTST0001, Jan. 2017. DOI: 10.1299/jtst.2017jtst0001.
  • S. Hasnaoui, A. Amahmid, A. Raji, H. Beji, A. El Mansouri and M. Hasnaoui, “LBM simulation of stabilizing/destabilizing effects of thermodiffusion and heat generation in a rectangular cavity filled with a binary mixture,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105417, Jul. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105417.
  • P. Deshmukh, S. K. Mitra and U. N. Gaitonde, “Investigation of natural circulation in cavities with uniform heat generation for different Prandtl number fluids,” Int. J. Heat Mass Transf., vol. 54, no. 7–8, pp. 1465–1474, Mar. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.046.
  • Y. M. Shim and J. M. Hyun, “Transient confined natural convection with internal heat generation,” Int. J. Heat Fluid Flow, vol. 18, no. 3, pp. 328–333, Jun. 1997. DOI: 10.1016/S0142-727X(97)00027-1.
  • M. A. Hossain, M. Z. Hafiz and D. A. S. Rees, “Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation,” Int. J. Therm. Sci., vol. 44, no. 7, pp. 676–684, Jul. 2005. DOI: 10.1016/j.ijthermalsci.2004.11.005.
  • Y. S. Jeong, S. Bin Seo and I. C. Bang, “Natural convection heat transfer characteristics of molten salt with internal heat generation,” Int. J. Therm. Sci., vol. 129, pp. 181–192, Jul. 2018. DOI: 10.1016/j.ijthermalsci.2018.01.036.
  • F. A. Kulacki and R. J. Goldstein, “Thermal convection in a horizontal fluid layer with uniform volumetric energy sources,” J. Fluid Mech., vol. 55, no. 02, pp. 271–287, Sep. 1972. DOI: 10.1017/S0022112072001855.
  • F. A. Kulacki and M. E. Nagle, “Natural convection in a horizontal fluid layer with volumetric energy sources,” J. Heat Transf., vol. 97, no. 2, pp. 204–211, May 1975. DOI: 10.1115/1.3450342.
  • M. A. Teamah, A. F. Elsafty and E. Z. Massoud, “Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source,” Int. J. Therm. Sci., vol. 52, no. 1, pp. 161–175, Feb. 2012. DOI: 10.1016/j.ijthermalsci.2011.09.006.
  • S. N. Gaikwad and S. Kouser, “Double diffusive convection in a couple stress fluid saturated porous layer with internal heat source,” Int. J. Heat Mass Transf., vol. 78, pp. 1254–1264, Nov. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.021.
  • B. C. Sekhar, N. Chandr. Kishan and C. Haritha, “Convection in Nanofluid-Filled Porous Cavity with Heat Absorption/Generation and Radiation,” J. Thermophys. Heat Transf., vol. 31, no. 3, pp. 549–562, Jul. 2017. DOI: 10.2514/1.T5010.
  • S. Hasnaoui, et al., “Double-diffusive natural convection in an inclined enclosure with heat generation and Soret effect,” Eng. Comput., vol. 35, no. 8, pp. 2753–2774, Nov. 2018. DOI: 10.1108/EC-06-2017-0225.
  • S. Hasnaoui, et al., “Hybrid lattice Boltzmann finite difference simulation of Soret convection flows in a square cavity with internal heat generation,” Numer. Heat Transf. Part A Appl, vol. 74, no. 1, pp. 948–973, Jul. 2018. DOI: 10.1080/10407782.2018.1487690.
  • N. F. M. Mokhtar, I. K. Khalid, Z. Siri, Z. B. Ibrahim and S. S. A. Gani, “Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation,” Phys. Fluids, vol. 29, no. 10, pp. 107105, Oct. 2017. DOI: 10.1063/1.4989584.
  • A. Lagra, M. Bourich, M. Hasnaoui, A. Amahmid and M. Er-Raki, “Analytical and numerical study of soret and dufour effects on double diffusive convection in a shallow horizontal binary fluid layer submitted to uniform fluxes of heat and mass,” Math. Probl. Eng., vol. 2018, pp. 1–12, Mar. 2018. DOI: 10.1155/2018/7946078.
  • H. Xu, Z. Luo, Q. Lou, S. Zhang and J. Wang, “Lattice Boltzmann simulations of the double-diffusive natural convection and oscillation characteristics in an enclosure with Soret and Dufour effects,” Int. J. Therm. Sci, vol. 136, pp. 159–171, Feb. 2019. DOI: 10.1016/j.ijthermalsci.2018.10.015.
  • Z. Guo and C. Shu, Lattice Boltzmann Method and Its Applications in Engineering, vol. 3. Singapore: World Scientific, 2013. DOI: 10.1142/8806.
  • Y. Dahani, M. Hasnaoui, A. Amahmid and S. Hasnaoui, “A multiple-relaxation-time lattice-boltzmann analysis for double-diffusive natural convection in a cavity with heating and diffusing plate inside filled with a porous medium,” Transp. Porous Med., vol. 143, no. 1, pp. 195–223, May 2022. DOI: 10.1007/s11242-022-01792-6.
  • A. Mezrhab, M. Amine Moussaoui, M. Jami, H. Naji and M. Bouzidi, “Double MRT thermal lattice Boltzmann method for simulating convective flows,” Phys. Lett. A, vol. 374, no. 34, pp. 3499–3507, Jul. 2010. DOI: 10.1016/j.physleta.2010.06.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.