Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
38
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hydrodynamic and rheological characteristics of a pseudoplastic fluid through a rotating cylinder

, &
Pages 250-269 | Received 18 Aug 2022, Accepted 13 Feb 2023, Published online: 16 Mar 2023

References

  • M. Murakami and K. Kikuyama, “Turbulent flow in axially rotating pipes,” J. Fluids Eng., vol. 102, no. 1, pp. 97–103, Mar. 1980. DOI: 10.1115/1.3240633.
  • K. Kikuyama, M. Murakami, K. Nishibori and K. Maeda, “Flow in an axially rotating pipe: A calculation of flow in the saturated region,” Bull. JSME, vol. 26, no. 214, pp. 506–513, 1983. DOI: 10.1299/jsme1958.26.506.
  • K. Nishibori, K. Kikuyama and M. Murakami, “Laminarization of turbulent flow in the inlet region of an axially rotating pipe,” JSME Int. J., vol. 30, no. 260, pp. 255–262, 1987. DOI: 10.1299/jsme1987.30.255.
  • G. Reich and H. Beer, “Fluid flow and heat transfer in an axially rotating pipe—I. Effect of rotation on turbulent pipe flow,” Int. J. Heat Mass Transfer, vol. 32, no. 3, pp. 551–562, Mar. 1989. DOI: 10.1016/0017-9310(89)90143-9.
  • S. Imao, M. Itoh and T. Harada, “Turbulent characteristics of the flow in an axially rotating pipe,” Int. J. Heat Fluid Flow, vol. 17, no. 5, pp. 444–451, Oct. 1996. DOI: 10.1016/0142-727X(96)00057-4.
  • S. Hirai, T. Takagi and M. Matsumoto, “Predictions of the laminarization phenomena in an axially rotating pipe flow,” J. Fluids Eng., vol. 110, no. 4, pp. 424–430, Dec. 1988. DOI: 10.1115/1.3243573.
  • S. W. Tu and B. R. Ramaprian, “Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions,” J. Fluid Mech., vol. 137, pp. 31–58, Dec. 1983. DOI: 10.1017/S0022112083002281.
  • P. Orlandi and M. Fatica, “Direct simulations of turbulent flow in a pipe rotating about its axis,” J. Fluid Mech., vol. 343, pp. 43–72, Jul. 1997. DOI: 10.1017/S0022112097005715.
  • Z. Yang, “Large eddy simulation of fully developed turbulent flow in a rotating pipe,” Int. J. Numer. Meth. Fluids, vol. 33, no. 5, pp. 681–694, 2000. DOI: 10.1002/1097-0363(20000715)33:5<681::AID-FLD25>3.0.CO;2-A.
  • A. A. Feiz, M. Ould-Rouis and G. Lauriat, “Turbulence statistics in a fully developed rotating pipe flow,” J. Enhanced Heat Transf., vol. 12, no. 3, pp. 273–288, 2005. DOI: 10.1615/JEnhHeatTransf.v12.i3.50.
  • A. B. Metzner and J. C. Reed, “Flow of non-newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions,” AIChE J., vol. 1, no. 4, pp. 434–440, Dec. 1955. DOI: 10.1002/aic.690010409.
  • A. B. Metzner, “Non-Newtonian fluid flow. Relationships between recent pressure-drop correlations,” Ind. Eng. Chem., vol. 49, no. 9, pp. 1429–1432, Sep. 1957. DOI: 10.1021/ie50573a049.
  • D. W. Dodge and A. B. Metzner, “Turbulent flow of non-newtonian systems,” AIChE J., vol. 5, no. 2, pp. 189–204, Jun. 1959. DOI: 10.1002/aic.690050214.
  • F. T. Pinho and J. H. Whitelaw, “Flow of non-Newtonian fluids over a confined baffle,” J. Fluid Mech., vol. 226, pp. 475–496, May 1991. DOI: 10.1017/S0022112091002471.
  • M. R. Malin, “Turbulent pipe flow of power-law fluids,” Int. Commun. Heat Mass Transf., vol. 24, no. 7, pp. 977–988, Nov. 1997. DOI: 10.1016/S0735-1933(97)00083-3.
  • M. Rudman, H. M. Blackburn, L. J. W. Graham and L. Pullum, “Turbulent pipe flow of shear-thinning fluids,” J. Non-Newtonian Fluid Mech., vol. 118, no. 1, pp. 33–48, Mar. 2004. DOI: 10.1016/j.jnnfm.2004.02.006.
  • P. S. Gnambode, P. Orlandi, M. Ould-Rouiss and X. Nicolas, “Large-Eddy simulation of turbulent pipe flow of power-law fluids,” Int. J. Heat Fluid Flow, vol. 54, pp. 196–210, Aug. 2015. DOI: 10.1016/j.ijheatfluidflow.2015.05.004.
  • A. A. Gavrilov and V. Ya. Rudyak, “Direct numerical simulation of the turbulent flows of power-law fluids in a circular pipe,” Thermophys. Aeromech., vol. 23, no. 4, pp. 473–486, Jul. 2016. DOI: 10.1134/S0869864316040016.
  • A. A. Gavrilov and V. Ya. Rudyak, “Direct numerical simulation of the turbulent energy balance and the shear stresses in power-law fluid flows in pipes,” Fluid Dyn., vol. 52, no. 3, pp. 363–374, May 2017. DOI: 10.1134/S0015462817030048.
  • J. Singh, M. Rudman and H. M. Blackburn, “Reynolds number effects in pipe flow turbulence of generalized Newtonian fluids,” Phys. Rev. Fluids, vol. 3, no. 9, Sep. 2018. DOI: 10.1103/PhysRevFluids.3.094607.
  • J. Singh, M. Rudman and H. M. Blackburn, “The effect of yield stress on pipe flow turbulence for generalised newtonian fluids,” J. Non-Newtonian Fluid Mech., vol. 249, pp. 53–62, Nov. 2017. DOI: 10.1016/j.jnnfm.2017.09.007.
  • E. Z. Zheng, M. Rudman, J. Singh and S. B. Kuang, “Direct numerical simulation of turbulent non-Newtonian flow using OpenFOAM,” Appl. Math. Modell., vol. 72, pp. 50–67, Aug. 2019. DOI: 10.1016/j.apm.2019.03.003.
  • V. Vidyanidhi and A. Sithapathi, “Non-Newtonian flow in a rotating straight pipe,” J. Phys. Soc. Jpn., vol. 29, no. 1, pp. 215–219, Jul. 1970. DOI: 10.1143/JPSJ.29.215.
  • R. W. Gunn, B. Mena and K. Walters, “On Newtonian and non-Newtonian flow in a rotating pipe,” J. Appl. Math. Phys. (ZAMP), vol. 25, no. 5, pp. 591–606, Sep. 1974. DOI: 10.1007/BF01596121.
  • M. Abdi, A. Noureddine and M. Ould-Rouiss, “Numerical simulation of turbulent forced convection of a power law fluid flow in an axially rotating pipe,” J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 1, Dec. 2019. DOI: 10.1007/s40430-019-2099-7.
  • T. Ohta and M. Miyashita, “DNS and LES with an extended Smagorinsky model for wall turbulence in non-Newtonian viscous fluids,” J. Non-Newtonian Fluid Mech., vol. 206, pp. 29–39, Apr. 2014. DOI: 10.1016/j.jnnfm.2014.02.003.
  • E. Montreuil, “Simulation numérique pour l’aérothermique avec des modèles sous-maille,” Doctoral dissertation, Université Pierre et Marie Curie-Paris VI, Paris, Oct. 2000.
  • T. A. Zang, “Numerical simulation of the dynamics of turbulent boundary layers: Perspectives of a transition simulator,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 336, no. 1641, pp. 95–102, Aug. 1991.
  • L. Redjem-Saad, M. Ould-Rouiss and G. Lauriat, “Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number,” Int. J. Heat Fluid Flow, vol. 28, no. 5, pp. 847–861, Oct. 2007. DOI: 10.1016/j.ijheatfluidflow.2007.02.003.
  • M. Ould-Rouiss, A. Dries and A. Mazouz, “Numerical predictions of turbulent heat transfer for air flow in rotating pipe,” Int. J. Heat Fluid Flow, vol. 31, no. 4, pp. 507–517, Aug. 2010. DOI: 10.1016/j.ijheatfluidflow.2010.02.015.
  • Y. Zhang, A. Gandhi, A. G. Tomboulides and S. A. Orszag, “Simulation of pipe flow,” in Application of Direct and Large Eddy Simulation to Transition and Turbulence, pp. 11–17, 1994.
  • P. Orlandi and D. Ebstein, “Turbulent budgets in rotating pipes by DNS,” Int. J. Heat Fluid Flow, vol. 21, no. 5, pp. 499–505, Oct. 2000. DOI: 10.1016/S0142-727X(00)00037-0.
  • M. Ould-Rouiss and A. Feiz, “Numerical simulation of turbulent pipe flow,” in Fluid Mechanics and Pipe Flow: Turbulence, Simulation and Dynamics, D. Matos and C. Valerio, Eds. New York: Nova Publishers, 2009, pp. 231–268.
  • F. Gomes, “Hydraulic, Power Law models, calculation method using rational polynomial models,” in Technical Meeting on software Developing in Drilling Operations, CAPER/87, Salvador, Brazil, 1987.
  • R. W. Hanks and B. L. Ricks, “Transitional and turbulent pipeflow of pseudoplastic fluids,” J. Hydronautics, vol. 9, no. 1, pp. 39–44, Jan. 1975. DOI: 10.2514/3.63014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.