Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
186
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Temperature response in skin tissue during hyperthermia based on three-phase-lag bioheat model using RBF meshfree method

ORCID Icon & ORCID Icon
Pages 287-305 | Received 30 Aug 2022, Accepted 13 Feb 2023, Published online: 24 Feb 2023

References

  • J. Liu, L. Zhu and L. X. Xu, “Studies on the three-dimensional temperature transients in the canine prostate during transurethral microwave thermal therapy,” J. Biomech. Eng., vol. 122, no. 4, pp. 372–379, 2000. DOI: 10.1115/1.1288208.
  • R. L. Magin and A. F. Peterson, “Invited review: Noninvasive microwave phased arrays for local hyperthermia: A review,” Int. J. Hyperthermia, vol. 5, no. 4, pp. 429–450, 1989. DOI: 10.3109/02656738909140470.
  • R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng., vol. 42, no. 8, pp. 828–839, 1995. DOI: 10.1109/10.398644.
  • G. Fibich, “Time dispersive effects in ultrashort laser-tissue interactions,” J. Heat Transfer, vol. 322, pp. 27–32, 1995.
  • W. Whelan and D. Wyman, “Temperature reconstruction by estimating the thermophysical and optical properties of tissues during interstitial laser heating,” Adv. Heat Mass Transfer Biotechnol., vol. 322, pp. 17–26, 1995.
  • S. Rastegar, A. M. Chard and A. Azeemi, “An analysis of the kinetics of single-rate and multi-rate thermal damage in laser irradiation of biological tissue,” J. Heat Transfer, vol. 268, pp. 137–137, 1993.
  • Z. Yilbas, M. Sami and T. Patiroglu, “Study into penetration speed during laser cutting of brain tissues,” J. Med. Eng. Technol., vol. 22, no. 6, pp. 274–279, 1998. DOI: 10.3109/03091909809010011.
  • G. L. Valderrama, L. G. Fredin, M. J. Berry, B. Dempsey and G. M. Harpole, “Temperature distributions in laser-irradiated tissues,” in Laser-Tissue Interaction II, vol. 1427, S. L. Jacques, Ed. Los Angeles, CA: SPIE, 1991, pp. 200–213. DOI: 10.1117/12.44104.
  • V. Pustovalov, “Thermal processes under the action of laser radiation pulse on absorbing granules in heterogeneous biotissues,” Int. J. Heat Mass Transfer, vol. 36, no. 2, pp. 391–399, 1993. DOI: 10.1016/0017-9310(93)80015-M.
  • S. Field and N. Bleehen, “Hyperthermia in the treatment of cancer,” Cancer Treat. Rev., vol. 6, no. 2, pp. 63–94, 1979. DOI: 10.1016/S0305-7372(79)80043-2.
  • Z. P. Chen and R. B. Roemer, “The effects of large blood vessels on temperature distributions during simulated hyperthermia,” J. Biomech. Eng., vol. 114, no. 4, pp. 473–481, 1992. DOI: 10.1115/1.2894097.
  • S. T. Clegg and R. B. Roemer, “Reconstruction of experimental hyperthermia temperature distributions: Application of state and parameter estimation,” J. Biomech. Eng., vol. 115, no. 4A, pp. 380–388, 1993. DOI: 10.1115/1.2895501.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • C. Cattaneo, “A form of heat-conduction equations which eliminates the paradox of instantaneous propagation,” Comptes Rendus, vol. 247, pp. 431, 1958.
  • P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur,” Comptes Rendu, vol. 246, pp. 3154–3155, 1958.
  • D. Y. Tzou, “A unified field approach for heat conduction from macro-to micro-scales,” J. Heat Transfer, vol. 117, no. 1, pp. 8–16, 1995. DOI: 10.1115/1.2822329.
  • W. Q. Lu, J. Liu and Y. Zeng, “Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method,” Eng. Anal. Boundary Elem., vol. 22, no. 3, pp. 167–174, 1998. DOI: 10.1016/S0955-7997(98)00039-3.
  • Ş. Özen, S. Helhel and O. Cerezci, “Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer,” Burns, vol. 34, no. 1, pp. 45–49, 2008. DOI: 10.1016/j.burns.2007.01.009.
  • X. Z. Liu, Y. Zhu, F. Zhang and X. F. Gong, “Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method,” Chin. Phys. B, vol. 22, no. 2, pp. 024301, 2013. DOI: 10.1088/1674-1056/22/2/024301.
  • R. Fazlali and H. Ahmadikia, “Analytical solution of thermal wave models on skin tissue under arbitrary periodic boundary conditions,” Int. J. Thermophys., vol. 34, no. 1, pp. 139–159, 2013. DOI: 10.1007/s10765-013-1396-0.
  • M. R. Salimpour and E. Shirani, “Heat transfer analysis of skin during thermal therapy using thermal wave equation,” J. Therm. Biol., vol. 64, pp. 7–18, 2017.
  • B. Deka and J. Dutta, “Finite element methods for non-Fourier thermal wave model of bio heat transfer with an interface,” J. Appl. Math. Comput., vol. 62, no. 1–2, pp. 701–724, 2020. DOI: 10.1007/s12190-019-01304-8.
  • J. Zhou, Y. Zhang and J. Chen, “An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues,” Int. J. Therm. Sci., vol. 48, no. 8, pp. 1477–1485, 2009. DOI: 10.1016/j.ijthermalsci.2008.12.012.
  • S. Singh and S. Kumar, “Numerical study on triple layer skin tissue freezing using dual phase lag bio-heat model,” Int. J. Therm. Sci., vol. 86, pp. 12–20, 2014. DOI: 10.1016/j.ijthermalsci.2014.06.027.
  • H. Askarizadeh and H. Ahmadikia, “Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue,” Heat Mass Transfer, vol. 50, no. 12, pp. 1673–1684, 2014. DOI: 10.1007/s00231-014-1373-6.
  • P. Kumar, D. Kumar and K. Rai, “A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment,” J. Therm. Biol., vol. 49, pp. 98–105, 2015.
  • P. Kumar, D. Kumar and K. Rai, “Numerical simulation of dual-phase-lag bioheat transfer model during thermal therapy,” Math. Biosci., vol. 281, pp. 82–91, 2016. DOI: 10.1016/j.mbs.2016.08.013.
  • S. R. Choudhuri, “On a thermoelastic three-phase-lag model,” J. Therm. Stresses, vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • R. Quintanilla and R. Racke, “A note on stability in three-phase-lag heat conduction,” Int. J. Heat Mass Transfer, vol. 51, no. 1-2, pp. 24–29, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.045.
  • R. Kumar and V. Chawla, “A study of plane wave propagation in anisotropic three-phase-lag and two-phase-lag model,” Int. Commun. Heat Mass Transfer, vol. 38, no. 9, pp. 1262–1268, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.07.005.
  • I. Kaur, P. Lata and K. Handa, “Effects of memory dependent derivative of bio-heat model in skin tissue exposed to laser radiation,” EAI Endorsed Trans. Pervasive Health Technol., vol. 6, no. 22, pp. 164589, 2020. DOI: 10.4108/eai.13-7-2018.164589.
  • P. Lata, I. Kaur and K. Singh, “Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer,” Steel Compos. Struct. Int. J., vol. 35, no. 3, pp. 343–351, 2020.
  • I. Kaur, P. Lata and K. Singh, “Effect of memory dependent derivative on forced transverse vibrations in transversely isotropic thermoelastic cantilever nano-beam with two temperature,” Appl. Math. Modell., vol. 88, pp. 83–105, 2020. DOI: 10.1016/j.apm.2020.06.045.
  • P. Lata and H. Kaur, “Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature,” Steel and Composite Structures,” An Int. J., vol. 38, no. 2, pp. 213–221, 2021.
  • R. Kumar and V. Chawla, “Reflection and refraction of plane wave at the interface between elastic and thermoelastic media with three-phase-lag model,” Int. Commun. Heat Mass Transfer, vol. 48, pp. 53–60, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.08.013.
  • A. Akbarzadeh, J. Fu and Z. Chen, “Three-phase-lag heat conduction in a functionally graded hollow cylinder,” Trans. Can. Soc. Mech. Eng., vol. 38, no. 1, pp. 155–171, 2014. DOI: 10.1139/tcsme-2014-0010.
  • S. Falahatkar, A. Nouri-Borujerdi, A. Mohammadzadeh and M. Najafi, “Evaluation of heat conduction in a laser irradiated tooth with the three-phase-lag bio-heat transfer model,” Therm. Sci. Eng. Prog., vol. 7, pp. 203–212, 2018. DOI: 10.1016/j.tsep.2018.06.012.
  • Q. Zhang, Y. Sun and J. Yang, “Bio-heat response of skin tissue based on three-phase-lag model,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020.
  • D. Kumar and K. Rai, “Three-phase-lag bioheat transfer model and its validation with experimental data,” Mech. Based Des. Struct. Mach., vol. 50, no. 7, pp. 2493–2507, 2022.
  • A. Hobiny, F. Alzahrani and I. Abbas, “Analytical estimation of temperature in living tissues using the TPL bioheat model with experimental verification,” Mathematics, vol. 8, no. 7, pp. 1188, 2020. DOI: 10.3390/math8071188.
  • R. Verma and S. Kumar, “Computational study on skin tissue freezing using three-phase lag bioheat model,” J. Heat Transfer, vol. 143, no. 11, pp. 111201 (9 pages), 2021. DOI: 10.1115/1.4051764.
  • M. Zerroukat, H. Power and C. Chen, “A numerical method for heat transfer problems using collocation and radial basis functions,” Int. J. Numer. Meth. Eng., vol. 42, no. 7, pp. 1263–1278, 1998. DOI: 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I.
  • L. Cao, Q. H. Qin and N. Zhao, “An RBF–MFS model for analysing thermal behaviour of skin tissues,” Int. J. Heat Mass Transfer, vol. 53, no. 7-8, pp. 1298–1307, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.036.
  • M. Jamil and E. Ng, “Evaluation of meshless radial basis collocation method (RBCM) for heterogeneous conduction and simulation of temperature inside the biological tissues,” Int. J. Therm. Sci., vol. 68, pp. 42–52, 2013. DOI: 10.1016/j.ijthermalsci.2013.01.007.
  • Z. W. Zhang, H. Wang and Q. H. Qin, “Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues,” Int. J. Mol. Sci., vol. 16, no. 1, pp. 2001–2019, 2015. DOI: 10.3390/ijms16012001.
  • W. Chen, L. Ye and H. Sun, “Fractional diffusion equations by the Kansa method,” Comput. Math. Appl., vol. 59, no. 5, pp. 1614–1620, 2010. DOI: 10.1016/j.camwa.2009.08.004.
  • M. Abbaszadeh and M. Dehghan, “An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate,” Numer. Algorithms, vol. 75, no. 1, pp. 173–211, 2017. DOI: 10.1007/s11075-016-0201-0.
  • M. Dehghan, M. Abbaszadeh and A. Mohebbi, “Error estimate for the numerical solution of fractional reaction–subdiffusion process based on a meshless method,” J. Comput. Appl. Math., vol. 280, pp. 14–36, 2015. DOI: 10.1016/j.cam.2014.11.020.
  • M. Dehghan, M. Abbaszadeh and A. Mohebbi, “Analysis of a meshless method for the time fractional diffusion-wave equation,” Numer. Algorithms, vol. 73, no. 2, pp. 445–476, 2016. DOI: 10.1007/s11075-016-0103-1.
  • A. Esen, F. Bulut and Ö. Oruç, “A unified approach for the numerical solution of time fractional Burgers’ type equations,” Eur. Phys. J. Plus., vol. 131, no. 4, pp. 1–13, 2016. DOI: 10.1140/epjp/i2016-16116-5.
  • V. R. Hosseini, E. Shivanian and W. Chen, “Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping,” J. Comput. Phys., vol. 312, pp. 307–332, 2016. DOI: 10.1016/j.jcp.2016.02.030.
  • Q. Liu, F. Liu, I. Turner, V. Anh and Y. Gu, “A RBF meshless approach for modeling a fractal mobile/immobile transport model,” Appl. Math. Comput., vol. 226, pp. 336–347, 2014. DOI: 10.1016/j.amc.2013.10.008.
  • H. R. Ghehsareh, S. H. Bateni and A. Zaghian, “A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation,” Eng. Anal. Boundary Elem., vol. 61, pp. 52–60, 2015. DOI: 10.1016/j.enganabound.2015.06.009.
  • H. R. Ghehsareh, A. Zaghian and M. Raei, “A local weak form meshless method to simulate a variable order time-fractional mobile–immobile transport model,” Eng. Anal. Boundary Elem., vol. 90, pp. 63–75, 2018. DOI: 10.1016/j.enganabound.2018.01.016.
  • H. R. Ghehsareh, M. Raei and A. Zaghian, “Application of meshless local Petrov–Galerkin technique to simulate two-dimensional time-fractional Tricomi-type problem,” J. Braz. Soc. Mech. Sci. Eng., vol. 41, no. 6, pp. 1–15, 2019. DOI: 10.1007/s40430-019-1749-0.
  • Ö. Oruç, “A meshfree computational approach based on multiple-scale pascal polynomials for numerical solution of a 2D elliptic problem with nonlocal boundary conditions,” Int. J. Comput. Methods, vol. 17, no. 10, pp. 1950080, 2020. DOI: 10.1142/S0219876219500804.
  • R. Salehi, “A meshless point collocation method for 2D multi-term time fractional diffusion-wave equation,” Numer. Algorithms, vol. 74, no. 4, pp. 1145–1168, 2017. DOI: 10.1007/s11075-016-0190-z.
  • J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. New York, USA: Chapman and Hall/CRC, 2002.
  • M. D. Buhmann, Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge, UK: Cambridge University Press, 2003.
  • P. K. Gupta, J. Singh and K. Rai, “Numerical simulation for heat transfer in tissues during thermal therapy,” J. Therm. Biol., vol. 35, no. 6, pp. 295–301, 2010. DOI: 10.1016/j.jtherbio.2010.06.007.
  • Z. S. Deng and J. Liu, “Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies,” J. Biomech. Eng., vol. 124, no. 6, pp. 638–649, 2002. DOI: 10.1115/1.1516810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.