Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 3
214
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Multi-objective optimization of non-uniform plate heat exchanger with dimples/protrusions for heat recovery of setting machines

, ORCID Icon, , , &
Pages 307-327 | Received 04 Nov 2022, Accepted 08 Feb 2023, Published online: 16 Mar 2023

References

  • İ. Özen, R. Schneider, M. R. Buchmeiser and X. G. Wang, “Revisiting the sublimation printability of cellulose-based textiles in light of ever-increasing sustainability issues,” Color. Technol., vol. 138, no. 6, pp. 581–589, 2022. DOI: 10.1111/cote.12639.
  • N. G. Patel, et al., “Energy model-based benchmarking of the drying process in the stenter machine,” Dry. Technol., vol. 39, no. 8, pp. 1114–1133, 2021. DOI: 10.1080/07373937.2021.1907401.
  • K. A. Koclu, “Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry,” Renewable Sustainable Energy Rev., vol. 15, no. 9, pp. 4424–4431, 2011. DOI: 10.1016/j.rser.2011.07.110.
  • X. K. Wu, et al., “Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry,” Appl. Therm. Eng., vol. 93, pp. 1193–1201, 2016. DOI: 10.1016/j.applthermaleng.2015.10.075.
  • O. Arsenyeva, et al., “Investigation of heat transfer and hydraulic resistance in small-scale pillow-plate heat exchangers,” Energy, vol. 181, pp. 1213–1224, 2019. DOI: 10.1016/j.energy.2019.05.099.
  • Y. A. Al-Turki, et al., “Thermal, frictional and exergetic analysis of non-parallel configurations for plate heat exchangers,” Chem. Eng. Process., vol. 161, p. 108319, 2021. DOI: 10.1016/j.cep.2021.108319.
  • O. E. Prun and A. B. Garyaev, “Method for optimization of heat-exchange units working in heat recovery systems,” Therm. Eng., vol. 67, no. 8, pp. 560–566, 2020. DOI: 10.1134/S0040601520080042.
  • P. Xu, et al., “Study on performance comparison of different fin combinations of catalyst filled plate fin heat exchanger for hydrogen liquefaction,” Int. J. Hydrog. Energy, vol. 47, no. 56, pp. 23661–23678, 2022. DOI: 10.1016/j.ijhydene.2022.05.157.
  • R. Vavřička, J. Boháč and T. Matuška, “Experimental development of the plate shower heat exchanger to reduce the domestic hot water energy demand,” Energy Build., vol. 254, p. 111536, 2022. DOI: 10.1016/j.enbuild.2021.111536.
  • K. Nilpueng, T. Keawkamrop, H. S. Ahn and S. Wongwises, “Effect of chevron angle and surface roughness on thermal performance of single-phase water flow inside a plate heat exchanger,” Int. Commun. Heat Mass Transfer, vol. 91, pp. 201–209, 2018. DOI: 10.1016/j.icheatmasstransfer.2017.12.009.
  • N. Katkhaw, N. Vorayos, T. Kiatsiriroat, Y. Khunatorn, D. Bunturat and A. Nuntaphan, “Heat transfer behavior of flat plate having 45° ellipsoidal dimpled surfaces,” Case Stud. Therm. Eng., vol. 2, pp. 67–74, 2014. DOI: 10.1016/j.csite.2013.12.002.
  • N. Vorayos, N. Katkhaw, T. Kiatsiriroat and A. Nuntaphan, “Heat transfer behavior of flat plate having spherical dimpled surfaces,” Case Stud. Therm. Eng., vol. 8, pp. 370–377, 2016. DOI: 10.1016/j.csite.2016.09.004.
  • D. P. Soman, S. Karthika, P. Kalaichelvi and T. K. Radhakrishnan, “Experimental study of turbulent forced convection heat transfer and friction factor in dimpled plate heat exchanger,” Appl. Therm. Eng., vol. 162, p. 114254, 2019. DOI: 10.1016/j.applthermaleng.2019.114254.
  • M. Bobič, B. Gjerek, I. Golobič and I. Bajsić, “Dynamic behaviour of a plate heat exchanger: Influence of temperature disturbances and flow configurations,” Int. J. Heat Mass Transfer, vol. 163, p. 120439, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120439.
  • Y. Rao, P. Zhang, Y. M. Xu and H. B. Ke, “Experimental study and numerical analysis of heat transfer enhancement and turbulent flow over shallowly dimpled channel surfaces,” Int. J. Heat Mass Transfer, vol. 160, p. 120195, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120195.
  • J. Lee and K. S. Lee, “Correlations and shape optimization in a channel with aligned dimples and protrusions,” Int. J. Heat Mass Transfer, vol. 64, pp. 444–451, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.055.
  • H. B. Luan, J. P. Kuang, Z. Cao, Z. Wu, W. Q. Tao and B. Sundén, “CFD analysis of two types of welded plate heat exchangers,” Numer. Heat Transfer, Part A, vol. 71, no. 3, pp. 250–269, 2017. DOI: 10.1080/10407782.2016.1264761.
  • A. Della Torre, G. Montenegro, A. Onorati, S. Khadilkar and R. Icarelli, “Multi-scale CFD modeling of plate heat exchangers including offset-strip fins and dimple-type turbulators for automotive applications,” Energies, vol. 12, no. 15, pp. 2965, 2019. DOI: 10.3390/en12152965.
  • Y. Wang, S. Li, X. Yang, Y. Deng and C. Su, “Numerical and experimental investigation for heat transfer enhancement by dimpled surface heat exchanger in thermoelectric generator,” J. Electr. Mater., vol. 45, no. 3, pp. 1792–1802, 2016. DOI: 10.1007/s11664-015-4228-0.
  • S. Borjigin, S. Zhang, T. Ma, M. Zeng and Q. Wang, “Performance enhancement of cabinet cooling system by utilizing cross-flow plate heat exchanger,” Energy Conv. Manage., vol. 213, p. 112854, 2020. DOI: 10.1016/j.enconman.2020.112854.
  • J. P. Abraham, E. M. Sparrow, J. M. Gorman, Y. Zhao and W. J. Minkowycz, “Application of an intermittency model for laminar, transitional, and turbulent internal flows,” J. Fluid Eng.-Trans. ASME, vol. 141, no. 7, p. 071204, 2019. DOI: 10.1115/1.4042664.
  • J. P. Abraham, E. M. Sparrow and W. J. Minkowycz, “ Internal-flow Nusselt numbers for the low-Reynolds-number end of the laminar-to-turbulent transition regime,” Int. J. Heat Mass Transfer, vol. 54, no. 1-3, pp. 584–588, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.012.
  • S. Dinesh Kumar, D. Chandramohan, K. Purushothaman and T. Sathish, “Optimal hydraulic and thermal constrain for plate heat exchanger using multi objective wale optimization,” Mater. Today: Proc., vol. 21, pp. 876–881, 2020. DOI: 10.1016/j.matpr.2019.07.710.
  • L. Luo, W. Du, S. Wang, L. Wang, B. Sundén and X. Zhang, “Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators,” Energy, vol. 137, p. 152017, 2017. DOI: 10.1016/j.energy.2017.07.001.
  • M. Piper, A. Zibart, E. Djakow, R. Springer, W. Homberg and E. Y. Kenig, “Heat transfer enhancement in pillow-plate heat exchangers with dimpled surfaces: A numerical study,” Appl. Therm. Eng., vol. 153, pp. 142–146, 2019. DOI: 10.1016/j.applthermaleng.2019.02.082.
  • B. D. Raja, R. L. Jhala and V. Patel, “Thermal-hydraulic optimization of plate heat exchanger: A multi-objective approach,” Int. J. Therm. Sci., vol. 124, pp. 522–535, 2018. DOI: 10.1016/j.ijthermalsci.2017.10.035.
  • H. Shokouhmand and M. Hasanpour, “Effect of flow maldistribution on the optimal design of plate heat exchanger using constrained multi objective genetic algorithm,” Case Stud. Therm. Eng., vol. 18, p. 100570, 2020. DOI: 10.1016/j.csite.2019.100570.
  • Y. Cao, J. Zhan, J. X. Zhou and F. Q. Si, “Design optimization of plate-fin heat exchanger in a gas turbine and supercritical carbon dioxide combined cycle with thermal oil loop,” Appl. Sci., vol. 12, no. 1, p. 42, 2021. DOI: 10.3390/app12010042.
  • N. Javani, “Exergoeconomic optimisation of an air cooled heat exchanger with copper oxide nanoparticles,” IJEX, vol. 30, no. 3, pp. 259–274, 2019. DOI: 10.1504/IJEX.2019.103149.
  • Z. Y. Guo, H. Y. Zhu and X. G. Liang, “Entransy—A physical quantity describing heat transfer ability,” Int. J. Heat Mass Transfer, vol. 50, no. 13–14, pp. 2545–2556, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.11.034.
  • Z. Y. Guo, T. Zhao and T. W. Xue, “Entransy analysis of reversible thermodynamic cycles based on the conservation of entransy equation and its application,” Chin. Sci. Bull., vol. 64, no. 11, pp. 1200–1210, 2019. DOI: 10.1360/N972018-00865.
  • M. H. Ahmadi, M.-A. Ahmadi, E. Açıkkalp, M. Alhuyi Nazari, M. Arab Pour Yazdi and R. Kumar, “New thermodynamic analysis and optimization of performance of an irreversible diesel cycle,” Environ. Prog. Sustainable Energy, vol. 37, no. 4, pp. 1475–1490, 2018. DOI: 10.1002/ep.12810.
  • P. N. Huang and M. Q. Pan, “Secondary heat transfer enhancement design of variable cross-section microchannels based on entransy analysis,” Renewable Sustainable Energy Rev., vol. 141, p. 110834, 2021. DOI: 10.1016/j.rser.2021.110834.
  • J. Wen, X. Gu, M. Wang, Y. Liu and S. Wang, “Multi-parameter optimization of shell-and-tube heat exchanger with helical baffles based on entransy theory,” Appl. Therm. Eng., vol. 130, pp. 804–813, 2018. DOI: 10.1016/j.applthermaleng.2017.10.164.
  • Y. Zhu, K. Zhang, J. Liu, X. Niu and C. Jin, “Entransy analysis on the performance of the counter-flow heat exchangers for a double evaporating temperature chiller,” Int. J. Refrig., vol. 98, pp. 89–97, 2019. DOI: 10.1016/j.ijrefrig.2018.10.031.
  • S. Z. Xu and Z. Y. Guo, “Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles,” Energy, vol. 224, p. 120189, 2021. DOI: 10.1016/j.energy.2021.120189.
  • J. F. Guo, L. Cheng and M. T. Xu, “Entransy dissipation number and its application to heat exchanger performance evaluation,” Sci. Bull., vol. 54, no. 15, pp. 2708–2713, 2009. DOI: 10.1007/s11434-009-0295-z.
  • W. W. Focke, J. Zachariades and I. Olivier, “ The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers,” Int. J. Heat Mass Transfer, vol. 28, no. 8, pp. 1469–1479, 1985. DOI: 10.1016/0017-9310(85)90249-2.
  • K. Abe, T. Kondoh and Y. Nagano, “ A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-I. Flow field calculations,” Int. J. Heat Mass Transfer, vol. 37, no. 1, pp. 139–151, 1994. DOI: 10.1016/0017-9310(94)90168-6.
  • Z. Y. Guo, X. G. Cheng and Z. Z. Xia, “Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization,” Chin. Sci. Bull., vol. 48, no. 4, pp. 406–410, 2003. DOI: 10.1360/03tb9085.
  • X. Xing, W. Pu, Q. Zhang, Y. Yang and D. Han, “The multi-objective optimization of an axial cyclone separator in the gas turbine,” Int. J. Energy Res., vol. 46, no. 3, pp. 3428–3442, 2022. DOI: 10.1002/er.7391.
  • I. Kaya and Y. Ust, “A new method to multi-objective optimization of shell and tube heat exchanger for waste heat recovery,” Energy Sources, Part A, pp. 1–18, 2021. DOI: 10.1080/15567036.2021.1928336.
  • R. Priya, D. Ramesh and V. Udutalapally, “NSGA-2 optimized fuzzy inference system for crop plantation correctness index identification,” IEEE Trans. Sustainable Comput., vol. 7, no. 1, pp. 172–188, 2022. DOI: 10.1109/TSUSC.2021.3064417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.