Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 3
79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sensitivity analysis of a louvered micro-channel evaporator

, , , , &
Pages 422-443 | Received 14 Sep 2022, Accepted 15 Feb 2023, Published online: 17 Mar 2023

References

  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • L. A. Jiang et al., “Closed-loop electroosmotic microchannel cooling system for VLSI circuits,” IEEE Trans. Comp. Pack. Technol., vol. 25, no. 3, pp. 347–355, 2002. DOI: 10.1109/TCAPT.2002.800599.
  • R. Riddle, R. Contolini, and A. Bernhardt, “Design calculations for the microchannel heatsink,” NASA STI/Recon Tech. Rep., vol. 91, p. 22534, 1991.
  • Y. K. Wang et al., “Experimental and techno-economic analysis of transcritical CO2 heat pump water heater with fin-and-tube and microchannel heat exchanger,” Appl. Therm. Eng., vol. 199, p. 117606, 2021. DOI: 10.1016/j.applthermaleng.2021.117606.
  • Y. Ge and W. T. Jiang, “The research progress and application of the micro-channel heat exchange,” Chem. Ind. Eng. Prog., vol. 35, no. S1, pp. 10–15, 2016. DOI: 10.16085/j.issn.1000-6613.2016.s1.002.
  • Z. G. Qi, Y. Zhao, and J. P. Chen, “Performance enhancement study of mobile air conditioning system using microchannel heat exchangers,” Int. J. Refrig., vol. 33, no. 2, pp. 301–312, 2010. DOI: 10.1016/j.ijrefrig.2009.08.014.
  • Y. H. Lin et al., “A numerical study of slug bubble growth during flow boiling in a diverging microchannel,” Numer. Heat Transf. A: Appl., vol. 80, no. 7, pp. 356–367, 2021. DOI: 10.1080/10407782.2021.1947093.
  • Z. G. Gao et al., “Thermal performance investigation of supercritical methane in minichannel heat sink on flight vehicle actuator under geometry effect of cross section,” Numer. Heat Transf. A: Appl., vol. 83, no. 3, pp. 315–330, 2023. DOI: 10.1080/10407782.2022.2091374.
  • X. Zhou et al., “Experimental study on heat transfer and flow resistance performance of a microchannel heat exchanger with zigzag flow channels,” Prog. Nucl. Energy, vol. 147, p. 104190, 2022. DOI: 10.1016/j.pnucene.2022.104190.
  • C. T. Zeng, “Analysis on market prospect and production technology of micro-channel aluminum flat tube for evaporator,” Nonferr. Metals Process., vol. 49, no. 05, pp. 6–8, 2020.
  • P. Zhang and Q. Chen, “Research status and development trend of evaporators for refrigerators,” Chin. J. Refrig. Technol., vol. 40, no. 05, pp. 7–15, 2020.
  • C. Fang et al., “Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation,” Int. J. Multiphase Flow, vol. 36, no. 8, pp. 608–619, 2010. DOI: 10.1016/j.ijmultiphaseflow.2010.04.005.
  • M. Lori and K. Vafai, “Thermal and hydraulic performance of rectangular microchannel heat sinks with trapezoidal porous configuration,” Numer. Heat Transf. A: Appl., vol. 81, no. 3–6, pp. 72–93, 2022. DOI: 10.1080/10407782.2022.2038969.
  • W. S. Ling et al., “Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement,” Appl. Therm. Eng., vol. 170, p. 115011, 2020. DOI: 10.1016/j.applthermaleng.2020.115011.
  • C. Perret, C. Schaeffer, and J. Boussey, “Microchannel integrated heat sinks in silicon technology,” Proc. Conf. Rec. IEEE Ind. Appl. Conf. 33rd IAS Annu. Meet., vol. 2, pp. 1051–1055, 1998. DOI: 10.1109/IAS.1998.730276.
  • A. Mohammed Adham, N. Mohd-Ghazali, and R. Ahmad, “Thermal and hydrodynamic analysis of microchannel heat sinks: a review,” Renew. Sust. Energy Rev., vol. 21, pp. 614–622, 2013. DOI: 10.1016/j.rser.2013.01.022.
  • M. J. Song et al., “Mathematical modeling investigation on flow boiling and high efficiency heat dissipation of two rectangular radial microchannel heat exchangers,” Int. J. Heat Mass Transf., vol. 190, p. 122736, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122736.
  • G. N. Xie, Z. Y. Chen, B. Sunden, and W. H. Zhang, “Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks,” Numer. Heat Transf. A: Appl., vol. 63, no. 3, pp. 201–225, 2013. DOI: 10.1080/10407782.2013.730445.
  • C. Wang, X. Ji, B. F. Yang, R. Zhang, and D. Yang, “Study on heat transfer and dehumidification performance of desiccant coated microchannel heat exchanger,” Appl. Therm. Eng., vol. 192, p. 116913, 2021. DOI: 10.1016/j.applthermaleng.2021.116913.
  • C. P. Liang et al., “Experimental investigation on performance of desiccant coated microchannel heat exchangers under condensation conditions,” Energy Build., vol. 231, p. 110622, 2021. DOI: 10.1016/j.enbuild.2020.110622.
  • X. Y. Sun et al., “Experimental and comparison study on heat and moisture transfer characteristics of desiccant coated heat exchanger with variable structure sizes,” Appl. Therm. Eng., vol. 137, pp. 32–46, 2018. DOI: 10.1016/j.applthermaleng.2018.03.071.
  • M. A. Moradkhani, S. H. Hosseini, and M. Song, “Robust and general predictive models for condensation heat transfer inside conventional and mini/micro channel heat exchangers,” Appl. Therm. Eng., vol. 201, p. 117737, 2022. DOI: 10.1016/j.applthermaleng.2021.117737.
  • T. L. Liu, B. R. Fu, and C. Pan, “Boiling heat transfer of co- and counter-current microchannel heat exchangers with gas heating,” Int. J. Heat Mass Transf., vol. 56, no. 1, pp. 20–29, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.09.028.
  • H. A. Mohammed, G. Bhaskaran, N. H. Shuaib, and R. Saidur, “Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1502–1512, 2011. DOI: 10.1016/j.rser.2010.11.031.
  • H-u-R Siddiqi et al., “Heat transfer and pressure drop characteristics of ZnO/DIW based nanofluids in small diameter compact channels: an experimental study,” Case Stud. Therm. Eng., vol. 39, p. 102441, 2022. DOI: 10.1016/j.csite.2022.102441.
  • G. Sriharan, S. Harikrishnan, and H. F. Oztop, “Performance improvement of the mini hexagonal tube heat sink using nanofluids,” Therm. Sci. Eng. Prog., vol. 34, p. 101390, 2022. DOI: 10.1016/j.tsep.2022.101390.
  • M. Mahmoodi, A. Sohankar, and A. Joulaei, “Investigations of nanofluid flow and heat transfer in a rotating microchannel using single- and two-phase approaches,” Numer. Heat Transf. A: Appl., vol. 83, no. 2, pp. 80–115, 2023. DOI: 10.1080/10407782.2022.2083886.
  • H. Cheng, J. An, S. T. Zhao, and W. Zhao, “Analysis of the influence of refrigerant flow rate on the heat transfer characteristics of micro-channel evaporator (in Chinese),” Cryogenics/Refrigeration, vol. 9, no. 49, pp. 66–71, 2021. DOI: 10.16711/j.1001-7100.2021.09.012.
  • L. Zhang, M. J. Song, C. Y. H. Chao, and J. Shen, “An experimental study on the dynamic frosting characteristics on the edge zone of a horizontal copper plate under forced convection,” Int. J. Heat Mass Transf., vol. 200, p. 123541, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123541.
  • S. Liu et al., “A modeling study on developing the condensing-frosting performance maps for a variable speed air source heat pump,” J. Build. Eng., vol. 58, p. 104990, 2022. DOI: 10.1016/j.jobe.2022.104990.
  • W. Z. Huang, T. Zhang, J. Ji, and N. Xu, “Numerical study and experimental validation of a direct-expansion solar-assisted heat pump for space heating under frosting conditions,” Energy Build., vol. 185, pp. 224–238, 2019. DOI: 10.1016/j.enbuild.2018.12.033.
  • P. Cheng and H. Y. Wu, “Mesoscale and microscale phase-change heat transfer,” Adv. Heat Transf., vol. 39, pp. 461–563, 2006. DOI: 10.1016/S0065-2717(06)39005-3.
  • J. M. Li and B. X. Wang, “Size effect on two-phase regime for condensation in micro/mini tubes,” Heat Transf.—Asian Res., vol. 32, no. 1, pp. 65–71, 2003. DOI: 10.1002/htj.10076.
  • A. S. Tucker, “The LMTD correction factor for single-pass crossflow heat exchangers with both fluids unmixed,” J. Heat Transf., vol. 118, no. 2, pp. 488–490, 1996. DOI: 10.1115/1.2825873.
  • H. J. Wang, C. F. Zhang, N. Zhao, and Z. P. Zhi, “Sensitive analysis of energy consumption of operating parameters for coal-fired unit,” in 2008 Int. Conf. Mach. Learn. Cybernet., vol. 1, pp. 331–336, 2008. DOI: 10.1109/ICMLC.2008.4620426.
  • D. X. Xing, Z. X. Li, and Z. Y. Guo, “Analysis on effectiveness and entropy generation in heat exchangers,” J. Eng. Thermophys., vol. 18, no. 1, pp. 90–94, 1997.
  • Z. B. Zhao, X. J. Shi, Z. Q. Yu, and G. C. Yu, “Heat transfer coefficient model of finned-tube air cooler,” J. Refrig., vol. 38, no. 05, pp. 71–75, 2017. DOI: 10.3969/j.issn.0253-4339.2017.05.071.
  • V. Gnielinski, “New equations for heat and mass transfer in the turbulent flow in pipes and channels,” NASA STI/Recon Tech. Rep. A, vol. 41, pp. 8–16, 1975.
  • V. Gnielinski, “On heat transfer in tubes,” Int. J. Heat Mass Transf., vol. 63, pp. 134–140, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.015.
  • E. N. Sieder and G. E. Tate, “Heat transfer and pressure drop of liquids in tubes,” Ind. Eng. Chem., vol. 28, no. 12, pp. 1429–1435, 1936. DOI: 10.1021/ie50324a027.
  • S. Laohalertdecha, A. S. Dalkilic, and S. Wongwises, “Correlations for evaporation heat transfer coefficient and two-phase friction factor for R-134a flowing through horizontal corrugated tubes,” Int. Commun. Heat Mass Transf., vol. 38, no. 10, pp. 1406–1413, 2011.
  • J. Dong, J. Chen, Z. Chen, W. Zhang, and Y. Zhou, “Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers,” Energy Convers. Manage., vol. 48, no. 5, pp. 1506–1515, 2007. DOI: 10.1016/j.enconman.2006.11.023.
  • R. Yun, Y. Kim, and Y. Kim, “Air side heat transfer characteristics of plate finned tube heat exchangers with slit fin configuration under wet conditions,” Appl. Therm. Eng., vol. 29, no. 14, pp. 3014–3020, 2009. DOI: 10.1016/j.applthermaleng.2009.03.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.