Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
127
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Heat transfer characteristics of nanofluid under the action of magnetic field based on molecular dynamics and flow states

, &
Pages 491-515 | Received 20 Dec 2022, Accepted 16 Feb 2023, Published online: 21 Mar 2023

References

  • J. Patel, A. Soni, D. P. Barai, and B. A. Bhanvase, “A minireview on nanofluids for automotive applications: Current status and future perspectives,” Appl. Therm. Eng., vol. 291, pp. 119428, 2023. DOI: 10.1016/j.applthermaleng.2022.119428.
  • J. D. Chung et al., “Partially ionized hybrid nanofluid flow with thermal stratification,” J. Mater. Res. Technol., vol. 11, pp. 1457–1468, 2021. DOI: 10.1016/j.jmrt.2021.01.095.
  • M. Bargal et al., “Experimental investigation of the thermal performance of a radiator using various nanofluids for automotive PEMFC applications,” Int. J. Energ. Res., vol. 132, pp. 375–387, 2020. DOI: 10.1016/j.ijheatmasstransfer.2018.12.014.
  • V. Kumar et al., “Analysis of single and multi-wall carbon nanotubes (SWCNT/MWCNT) in the flow of Maxwell nanofluid with the impact of magnetic dipole,” Comput. Theor. Chem., vol. 1200, pp. 113223, 2021. DOI: 10.1016/j.comptc.2021.113223.
  • J. Mohammadpour, F. Salehi, A. Lee, and L. Brandt, “Nanofluid heat transfer in a microchannel heat sink with multiple synthetic jets and protrusions,” Int. J. Therm. Sci., vol. 179, pp. 107642, 2022. DOI: 10.1016/j.ijthermalsci.2022.107642.
  • B. Navaneethakrishnan, N. Nithyanandan, R. Adalarasan, M. Santhanakumar, and P. S. M. Kumar, “Optimal performance evaluation of energy efficient residential air conditioning system with nanofluidbased intercooler using taguchi-based response surface methodology,” J. New Mater. Electrochem. Syst., vol. 21, no. 3, pp. 141–150, 2018. DOI: 10.14447/jnmes.v21i3.455.
  • P. Kanti, K. V. Sharma, K. M. Yashawantha, M. Jamei, and Z. Said, “Properties of water-based fly ash-copper hybrid nanofluid for solar energy applications: Application of RBF model,” Sol. Energy Mater. Sol. Cells, vol. 234, pp. 111423, 2022. DOI: 10.1016/j.solmat.2021.111423.
  • J. Singh, M. K. Mittal, and V. Khullar, “Experimental study of single-slope solar still coupled with nanofluid-based volumetric absorption solar collector,” J. Sol. Energy Eng., vol. 144, no. 1, pp. 1–28, 2022. DOI: 10.1115/1.4052478.
  • B. Cuhadaroglu and M. S. Hacisalihoglu, “An experimental study on the performance of water-based CuO nanofluids in a plate heat exchanger,” Int. Commun. Heat Mass, vol. 137, pp. 106255, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106255.
  • M. I. Khan et al., “Significance of temperature-dependent viscosity and thermal conductivity of Walter’s B nanoliquid when sinusodal wall and motile microorganisms density are significant,” Surf. Interfaces, vol. 22, pp. 100849, 2021. DOI: 10.1016/j.surfin.2020.100849.
  • J. K. Madhukesh et al., “Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach,” J. Mol. Liq., vol. 335, pp. 116103, 2021. DOI: 10.1016/j.molliq.2021.116103.
  • M. Afrand, D. Toghraie, and N. Sina, “Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network,” Int. Commun. Heat Mass, vol. 75, pp. 262–269, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.04.023.
  • N. K. Cakmak, Z. Said, L. S. Sundar, Z. M. Ali, and A. K. Tiwari, “Preparation, characterization, stability, and thermal conductivity of rGO-Fe3O4-TiO2 hybrid nanofluid: An experimental study,” Powder Technol., vol. 372, no. 15, pp. 235–245, 2020. DOI: 10.1016/j.powtec.2020.06.012.
  • E. Kaloudis, E. Papanicolaou, and V. Belessiotis, “Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model,” Renew. Energy, vol. 97, pp. 218–229, 2016. DOI: 10.1016/j.renene.2016.05.046.
  • W. T. Urmi, M. M. Rahman, and W. A. W. Hamzah, “An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids,” Int. Commun. Heat Mass, vol. 116, pp. 104663, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104663.
  • Y. Chu, M. D. Ikram, M. I. Asjad, A. Ahmadian, and F. Ghaemi, “Influence of hybrid nanofluids and heat generation on coupled heat and mass transfer flow of a viscous fluid with novel fractional derivative,” J. Therm. Anal. Calorim., vol. 114, pp. 2057–2077, 2021. DOI: 10.1007/s10973-021-10692-8.
  • A. Abdulkadhim et al., “Effect of heat generation and heat absorption on natural convection of Cu-water nanofluid in a wavy enclosure under magnetic field,” Int. Commun. Heat Mass, vol. 120, pp. 105024, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105024.
  • B. Sun, Y. Guo, D. Yang, and H. W. Li, “The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes,” Appl. Therm. Eng., vol. 171, no. 5, pp. 114920, 2020. DOI: 10.1016/j.applthermaleng.2020.114920.
  • I. Nurdin, I. I. Yaacob, and M. R. Johan, “Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (γ-Fe2O3) nanofluids,” Exp. Therm. Fluid Sci., vol. 77, pp. 265–271, 2016. DOI: 10.1016/j.expthermflusci.2016.05.002.
  • M. Amani, M. Ameri, and A. Kasaeian, “Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field,” Exp. Therm. Fluid Sci., vol. 82, pp. 439–449, 2017. DOI: 10.1016/j.expthermflusci.2016.12.003.
  • C. N. Marin and I. Malaescu, “Experimental and theoretical investigations on thermal conductivity of a ferrofluid under the influence of magnetic field,” Eur. Phys. J. E Soft Matter, vol. 43, no. 9, pp. 61, 2020. DOI: 10.1140/epje/i2020-11986-3.
  • L. A. Lund et al., “Temporal stability analysis of magnetized hybrid nanofluid propagating through an unsteady shrinking sheet: Partial slip conditions,” Comput. Mater. Contin., vol. 66, pp. 1963–1975, 2021. DOI: 10.32604/cmc.2020.011976.
  • M. Hussain and M. Sheremet, “Convection analysis of the radiative nanofluid flow through porous media over a stretching surface with inclined magnetic field,” Int. Commun. Heat Mass, vol. 140, pp. 106559, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106559.
  • P. Soleymani et al., “Numerical investigation on turbulent flow, heat transfer, and entropy generation of water-based magnetic nanofluid flow in a tube with hemisphere porous under a uniform magnetic field,” Int. Commun. Heat Mass, vol. 137, pp. 106308, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106308.
  • C. C. Liao and W. K. Li, “Effect of different magnetic field angles on the relationship between nanofluid concentration and heat transfer,” Int. Commun. Heat Mass, vol. 135, pp. 106137, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106137.
  • M. M. Murray, “Demonstration of heat transfer enhancement using ferromagnetic particle laden fluid and switched magnetic fields,” J. Heat Mass Transf., vol. 130, no. 11, pp. 1617–1620, 2008. DOI: 10.1115/1.2970064.
  • M. H. Bonab, M. B. Shafii, and M. H. Nobakhti, “Experimental and numerical investigation of fully developed forced convection of water-based Fe3O4 nanofluid passing through a tube in the presence of an alternating magnetic field,” Adv. Mech. Eng., vol. 7, no. 2, pp. 16878140557102, 2015. DOI: 10.1177/1687814015571023.
  • M. Yarahmadi, H. Hoazami Goudarzi, and M. B. Shafii, Goudarzi, “Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes,” Exp. Therm. Fluid Sci., vol. 68, pp. 601–611, 2015. DOI: 10.1016/j.expthermflusci.2015.07.002.
  • H. Kargarsharifabad, “Experimental and numerical study of natural convection of Cu-water nanofluid in a cubic enclosure under constant and alternating magnetic fields,” Int. Commun. Heat Mass, vol. 119, pp. 104957, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104957.
  • M. Goharkhah, M. Ashjaee, and M. Shahabadi, “Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field,” Int. J. Therm. Sci., vol. 99, pp. 113–124, 2016. DOI: 10.1016/j.ijthermalsci.2015.08.008.
  • X. Zhang and Y. Zhang, “Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field,” Int. J. Therm. Sci., vol. 164, pp. 106897, 2021. DOI: 10.1016/j.ijthermalsci.2021.106897.
  • P. Akbari, M. Haghshenasfard, M. N. Esfahany, and M. Ehsani, “Mass transfer characteristics of ferrofluids flowing through a microchannel under AC magnetic field,” Int. Commun. Heat Mass, vol. 139, pp. 106436, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106436.
  • A. Shahsavar, M. Saghafian, M. R. Salimpour, and M. B. Shafii, “Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields,” Exp. Therm. Fluid Sci., vol. 76, pp. 1–11, 2016. DOI: 10.1016/j.expthermflusci.2016.03.010.
  • H. Aminfar and M. R. Haghgoo, “Brownian motion and thermophoresis effects on natural convection of alumina–water nanofluid,” Proc. Inst. Mech. Eng., vol. 227, pp. 100–110, 2012. DOI: 10.1177/0954406212445683.
  • Y. Chu et al., “Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling,” J. Mol. Liq., vol. 333, pp. 115969, 2021. DOI: 10.1016/j.molliq.2021.115969.
  • S. Choudhary, A. Sachdeva, and P. Kumar, “Time-based analysis of stability and thermal efficiency of flat plate solar collector using iron oxide nanofluid,” Appl. Therm. Eng., vol. 183, no. 1, pp. 115931, 2021. DOI: 10.1016/j.applthermaleng.2020.115931.
  • M. U. Sajid and Y. Bicer, “Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe3O4, and CNTs/water nanofluids for spectrum selective applications,” Ultrason. Sonochem., vol. 88, no. 1, pp. 106079, 2022. DOI: 10.1016/j.ultsonch.2022.106079.
  • A. Bejan and A. D. Kraus, Heat Transfer Handbook, vol. 30. Hoboken, NJ: Wiley, 2003, pp. 411
  • V. V. GnielinskiKarlsruhe, “Neue Gleichungen Fürden Wrme-und Den Stoffü-Bergang in Turbulent Durchsrtmten Rohren and Kanlen,” Forsch Ing-Wes, vol. 41, no. 1, pp. 8–16, 1975. DOI: 10.1007/BF02559682.
  • M. Ibrahim et al., “Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field,” Powder Technol., vol. 384, pp. 522–541, 2021. DOI: 10.1016/j.powtec.2021.01.077.
  • A. Shakiba and K. Vahedi, “Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger,” J. Magn. Magn. Mater., vol. 402, pp. 131–142, 2016. DOI: 10.1016/j.jmmm.2015.11.039.
  • S. Doganay, R. Alsangur, and A. Turgut, “Effect of external magnetic field on thermal conductivity and viscosity of magnetic nanofluids: A review,” Mater. Res. Express, vol. 66, no. 11, pp. 112003, 2018. DOI: 10.1088/2053-1591/ab44e9.
  • R. Ganguly, S. Sen, and I. K. Puri, “Heat transfer augmentation using a magnetic fluid under the influence of a line dipole,” J. Magn. Magn. Mater., vol. 271, no. 1, pp. 63–73, 2004. DOI: 10.1016/j.jmmm.2003.09.015.
  • F. Fadaei, A. M. Dehkordi, M. Shahrokhi, and Z. Abbasi, “Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field,” Appl. Therm. Eng., vol. 116, pp. 329–343, 2017. DOI: 10.1016/j.applthermaleng.2017.01.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.