Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
223
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Numerical investigation of forward, lateral, and backward injection of the coolant fluid in various flow characteristics to find the optimum film cooling effectiveness

&
Pages 516-535 | Received 19 Aug 2022, Accepted 16 Feb 2023, Published online: 21 Mar 2023

References

  • J. Zhang, S. Zhang, C. Wang, and X. Tan, “Recent advances in film cooling enhancement: A review,” Chinese J. Aeronaut., vol. 33, no. 4, pp. 1119–1136, Apr. 2020. DOI: 10.1016/j.cja.2019.12.023.
  • L. Meng, H. Li, G. Xie, Z. Tao, and Z. Zhou, “Film cooling performance on pressure side of turbine blade with different number of hole rows under rotating state,” Aerospace Sci. Technol., vol. 126, pp. 107569, Jul. 2022. DOI: 10.1016/j.ast.2022.107569.
  • Y. Jin, L. Lu, Z. Huang, and X. Han, “Numerical investigation of flat-plate film cooling using very-large eddy simulation method,” Int. J. Therm. Sci., vol. 171, pp. 107263, Jan. 2022. DOI: 10.1016/j.ijthermalsci.2021.107263.
  • H. Ogawa, “Effects of injection angle and pressure on mixing performance of fuel injection via various geometries for upstream-fuel-injected scramjets,” Acta Astronaut., vol. 128, pp. 485–498, Nov. 2016. DOI: 10.1016/j.actaastro.2016.08.008.
  • S. Zhang, J. Li, F. Qin, Z. Huang, and R. Xue, “Numerical investigation of combustion field of hypervelocity scramjet engine,” Acta Astronaut., vol. 129, pp. 357–366, Jul. 2016. DOI: 10.1016/j.actaastro.2016.08.008.
  • Y. Hang Wang, W. Yan Song, and D. Yong Shi, “Investigation of flameholding characteristics in a kerosene-fueled scramjet combustor with tandem dual-cavity,” Acta Astronaut., vol. 140, pp. 126–132, Nov. 2017. DOI: 10.1016/j.actaastro.2017.08.014.
  • W. Huang, L. Quan Li, L. Yan, and T. Tian Zhang, “Drag and heat flux reduction mechanism of blunted cone with aerodisks,” Acta Astronaut., vol. 138, pp. 168–175, Sept. 2017. DOI: 10.1016/j.actaastro.2017.05.040.
  • J. Zuo, S. Zhang, J. Qin, W. Bao, and N. Cui, “Performance evaluation of regenerative cooling/film cooling for hydrocarbon fueled scramjet engine,” Acta Astronaut., vol. 148, no. 92, pp. 57–68, 2018. DOI: 10.1016/j.actaastro.2018.04.037.
  • J. Tian, Y. Wang, J. Zhang, and X. Tan, “Numerical investigation on flow and film cooling characteristics of coolant injection in rotating detonation combustor,” Aerosp. Sci. Technol., vol. 122, pp. 107379, 2022. DOI: 10.1016/j.ast.2022.107379.
  • L. Yin and W. Liu, “Gaseous film cooling investigation in a multi-element splash platelet injector,” Acta Astronaut., vol. 144, pp. 353–362, Jan. 2018. DOI: 10.1016/j.actaastro.2017.12.045.
  • K. Kadotani and R. J. Goldstein, “Effect of mainstream variables on jets issuing from a row of inclined round holes” Amer. Soc. Mech. Eng., vol. 101, no. 2, pp. 298–304, Apr. 1979. DOI: 10.1115/1.3446486.
  • D. G. Bogard and K. A. Thole, “Gas turbine film cooling,” J. Propuls. Power, vol. 22, no. 2, pp. 249–270, May 2006. DOI: 10.2514/1.18034.
  • Z. Tao, Z. Zhao, S. Ding, G. Xu, and H. Wu, “Suitability of three different two-equation turbulence models in predicting film cooling performance over a rotating blade,” Int. J. Heat Mass Transf., vol. 52, no. 56, pp. 1268–1275, Feb. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.09.008.
  • F. Bazdidi-Tehrani and G. E. Andrews, “Full-coverage discrete hole film cooling: Investigation of the effect of variable density ratio,” J. Eng. Gas Turbines Power, vol. 116, no. 3, pp. 587–596, Jul. 1994. DOI: 10.1115/1.2906860.
  • G. Xu, J. Zhu, and Z. Tao, “Application of the TLVA model for predicting film cooling under rotating frames,” Int. J. Heat Mass Transf., vol. 53, no. 1516, pp. 3013–3022, Jul. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.03.029.
  • C. L. Liu, J. L. Liu, H. R. Zhu, A. S. Wu, Y. H. He, and Z. X. Zhou, “Film cooling sensitivity of laidback fanshape holes to variations in exit configuration and mainstream turbulence intensity,” Int. J. Heat Mass Transf., vol. 89, pp. 1141–1154, Oct. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.019.
  • A. Moeini and M. Rajabi Zargarabadi, “Genetic algorithm optimization of film cooling effectiveness over a rotating blade,” Int. J. Therm. Sci., vol. 125, pp. 248–255, Apr. 2018. DOI: 10.1016/j.ijthermalsci.2017.11.030.
  • S. Honami, T. Shizawa, and A. Uchiyama, “Behavior of the laterally injected jet in film cooling: Measurements of surface temperature and velocity/temperature field within the jet,” J. Turbomach., vol. 116, no. 1, pp. 106–112, Jan. 1994. DOI: 10.1115/1.2928264.
  • S. V. Ekkad, D. Zapata, and J. C. Han, “Film effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method,” J. Turbomach., vol. 119, no. 3, pp. 587–593, Jul. 1997. DOI: 10.1115/1.2841162.
  • D. L. Schmidt, B. Sen, and D. G. Bogard, “Film cooling with compound angle holes: Adiabatic effectiveness,” J. Turbomach., vol. 118, no. 4, pp. 807–813, Oct. 1996. DOI: 10.1115/1.2840938.
  • R. J. Goldstein and P. Jin, “Film cooling downstream of a row of discrete holes with compound angle,” J. Turbomach., vol. 123, pp. 222–230, Apr. 2001. DOI: 10.1115/1.1344905.
  • B. Sen, D. L. Schmidt, and D. G. Bogard, “Film cooling with compound angle holes: Heat transfer,” J. Turbomach., vol. 118, no. 4, pp. 800–806, Oct. 1996. DOI: 10.1115/1.2840937.
  • F. Ben Ali Kouchih, K. Boualem, M. Grine, and A. Azzi, “The effect of an upstream dune-shaped shells on forward and backward injection hole film cooling,” J. Heat Transfer, vol. 142, no. 12, Dec. 2020. DOI: 10.1115/1.4047643.
  • Y. S. Jeong and J. S. Park, “Effect of inlet compound angle of backward injection film cooling hole,” Energies, vol. 13, no. 4, pp. 808–1100, Feb. 2020. DOI: 10.3390/en13040808.
  • S. Zhang, C. Wang, X. Tan, J. Zhang, and J. Guo, “Numerical investigation on backward-injection film cooling with upstream ramps,” Energies, vol. 15, no. 12, pp. 4415, Jun. 2022. DOI: 10.3390/en15124415.
  • G. Subbuswamy, X. Li, and K. Gharat, “Numerical simulation of backward film cooling with fan-shaped holes,” presented at ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Paper No: HT2013-17801, V004T14A032, Minneapolis, Minnesota, USA, Jul. 14–19, 2013. DOI: 10.1115/HT2013-17801.
  • X. C. Li, G. Subbuswamy, and J. Zhou, “Performance of gas turbine film cooling with backward injection,” EPE, vol. 05, no. 04, pp. 132–137, 2013. DOI: 10.4236/epe.2013.54B025.
  • G. Subbuswamy, X. Li, and K. Gharat, “Numerical study of aerodynamic performance of film cooling with backward injection holes,” presented at ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology, Minneapolis, Minnesota, USA, Paper No: HT2013-17803, V004T14A033, Jul. 14–19, 2013. DOI: 10.1115/HT2013-17803.
  • S. Park, E. Y. Jung, S. H. Kim, H.-S. Sohn, and H. H. Cho, “Enhancement of film cooling effectiveness using backward injection holes,” Int. J. Therm. Sci., vol. 110, pp. 314–324, Dec. 2016. DOI: 10.1016/j.ijthermalsci.2016.08.001.
  • K. Singh, B. Premachandran, and M. R. Ravi, “Experimental and numerical studies on film cooling with reverse/backward coolant injection,” Int. J. Therm. Sci., vol. 111, pp. 390–408, Jan. 2017. DOI: 10.1016/j.ijthermalsci.2016.09.027.
  • R. Prenter, M. A. Hossain, L. Agricola, A. Ameri, and J. P. Bons, “Experimental characterization of reverse-oriented film cooling,” presented at the Heat Transfer, Charlotte, North Carolina, USA, Jun. 26–30, 2017. DOI: 10.1115/GT2017-64731.
  • J. Wang, C. Liu, Z. Zhao, J. Baleta, and B. Sundén, “Effect and optimization of backward hole parameters on film cooling performance by Taguchi method,” Energy Convers. Manag., vol. 214, pp. 112809, Jun. 2020. DOI: 10.1016/j.enconman.2020.112809.
  • K. D. Lee and K. Y. Kim, “Film cooling performance of cylindrical holes embedded in a transverse trench,” Numer. Heat Transf. A: Appl., vol. 65, no. 2, pp. 127–143, Oct. 2014. DOI: 10.1080/10407782.2013.826106.
  • J. Wang, K. Tian, J. Luo, and B. Sundén, “Effect of hole configurations on film cooling performance,” Numer. Heat Transf. A: Appl., vol. 75, no. 11, pp. 725–738, Feb. 2019. DOI: 10.1080/10407782.2019.1608762.
  • A. Immarigeon and I. Hassan, “An advanced impingement/film cooling scheme for gas turbines - Numerical study,” Int. J. Numer. Methods Heat Fluid Flow, vol. 16, no. 4, pp. 470–493, Jun. 2006. DOI: 10.1108/09615530610653091.
  • J. H. Kim and K. Y. Kim, “Film-cooling performance of converged-inlet hole shapes,” Int. J. Therm. Sci., vol. 124, pp. 196–211, Aug. 2018. DOI: 10.1016/j.ijthermalsci.2017.10.014.
  • X. Sun, G. Zhao, P. Jiang, W. Peng, and J. Wang, “Influence of hole geometry on film cooling effectiveness for a constant exit flow area,” Appl. Therm. Eng., vol. 130, pp. 1404–1415, Feb. 2018. DOI: 10.1016/j.applthermaleng.2017.11.117.
  • J. Wang, P. Cui, B. Sundén, and M. Vujanović, “Effects of deposition height and width on film cooling,” Numer. Heat Transf. A: Appl., vol. 70, no. 6, pp. 673–687, Aug. 2016. DOI: 10.1080/10407782.2016.1193351.
  • H. Khamane, A. Azzi, and Z. Mansouri, “Numerical investigation of film-cooling effectiveness downstream of a micro ramp,” Comput. Therm. Sci., vol. 10, no. 2, pp. 151–165, 2018. DOI: 10.1615/ComputThermalScien.2017020468.
  • N. Al-Zurfi, A. Turan, A. Nasser, and A. Alhusseny, “A numerical study of anti-vortex film-cooling holes designs in a 1-1/2 turbine stage using LES,” Propuls. Power Res., vol. 8, no. 4, pp. 275–299, Aug. 2019. DOI: 10.1615/ComputThermalScien.2017020468.
  • S. Khajehhasani and B. A. Jubran, “A numerical investigation of film cooling performance through variations in the location of discrete sister holes,” Appl. Therm. Eng., vol. 107, no. Aug., pp. 345–364, 2016. DOI: 10.1615/ComputThermalScien.2017020468.
  • Z. Shu, C. Dai, and J. Mi, “Numerical simulations on film cooling effectiveness from two staggered rows of coolant jets,” Lecture Notes Mech. Eng., 2016, pp. 143–148, 2019. DOI: 10.1007/978-981-10-7542-1_22.
  • L. Zhang, B. Qian, C. Zhang, J. Mao, and H. Fan, “Numerical study on the cooling characteristics of cat-ear-shaped film-cooling holes on turbine blades,” Case Stud. Therm. Eng., vol. 36, pp. 102050, Aug. 2022. DOI: 10.1016/j.csite.2022.102050.
  • C. Yang and J. Zhang, “Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs,” Exp. Therm. Fluid Sci., vol. 37, pp. 113–120, Feb. 2012. DOI: 10.1016/j.expthermflusci.2011.10.011.
  • F. Nemdili, A. Azzi, and B. A. Jubran, “Numerical investigation of the influence of a hole imperfection on film cooling effectiveness,” Int. J. Numer. Methods Heat Fluid Flow, vol. 21, no. 1, pp. 46–60, Jan. 2011. DOI: 10.1108/09615531111095067.
  • F. Kebir and A. Azzi, “Study of wave number effect in wavy plate for improving the film cooling effectiveness at spanwise direction,” Numer. Heat Transf. A: Appl., vol. 73, no. 6, pp. 408–427, Mar. 2018. DOI: 10.1080/10407782.2018.1444870.
  • X. Chen, Y. Wang, Y. Long, and S. Weng, “Effect of partial blockage on flow and heat transfer of film cooling with cylindrical and fan-shaped holes,” Int. J. Therm. Sci., vol. 164, pp. 106866, Jun. 2021. DOI: 10.1016/j.ijthermalsci.2021.106866.
  • M. G. Ghorab, I. G. Hassan, and T. Lucas, “An experimental investigation of film cooling performance of louver scheme,” Int. J. Heat Mass Transf., vol. 54, no. 78, pp. 1387–1399, Mar. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.12.002.
  • A. Kohli and D. G. Bogard, “Adiabatic effectiveness, thermal fields, and velocity fields for film cooling with large angle injection,” presented at ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, USA, pp. V004T09A044-V004T09A044, Jun. 1995. DOI: 10.1115/95-GT-219.
  • A. K. Sinha, D. G. Bogard, and M. E. Crawford, “Film-cooling effectiveness downstream of a single row of holes with variable density ratio,” J. Turbomach., vol. 113, no. 3, pp. 442–449, Jun. 1991. DOI: 10.1115/1.2927894.
  • E. R. G. Eckert, “Gas-to-gas film cooling,” J. Eng. Phys., vol. 19, no. 3, pp. 1091–1101, Sept. 1970. DOI: 10.1007/BF00826233.
  • S. Baheri Islami and B. A. Jubran, “The effect of turbulence intensity on film cooling of gas turbine blade from trenched shaped holes,” Heat Mass Transf., vol. 48, no. 5, pp. 831–840, Nov. 2012. DOI: 10.1007/s00231-011-0938-x.
  • D. Lakehal, G. S. Theodoridis, and W. Rodi, “Computation of film cooling of a flat plate by lateral injection from a row of holes,” Int. J. Heat Fluid Flow, vol. 19, no. 5, pp. 418–430, Oct. 1998. DOI: 10.1016/S0142-727X(98)10022-X.
  • C. J. P. Forth, P. J. Loftus, and T. V. Jones, “The effect of density ratio on the film-cooling of a flat plate,” presented at AGARD Heat Transfer and Cooling in Gas Turbines 12 p (SEE N86-29823 21-07), vol. 1, Sept. 1985.
  • L. M. Wright, S. A. Blake, and J.-C. Han, “Film cooling effectiveness distributions on a turbine blade cascade platform with stator-rotor purge and discrete film hole flows,” J. Turbomachinery, vol. 130, no. 3, pp. 31015, Jul. 2008. DOI: 10.1115/1.2777186.
  • S. V. Ekkad, J.-C. Han, and H. Du, “Detailed film cooling measurements on a cylindrical leading edge model: Effect of free-stream turbulence and coolant density,” Heat Transf. Electric Power Ind. Cogeneration, vol. 120, no. 4, pp. 799–807, 1998. DOI: 10.1115/97-GT-181.
  • D. R. Pedersen, E. R. G. Eckert, and R. J. Goldstein, “Film cooling with large density differences between the mainstream and the secondary fluid measured by the heat-mass transfer analogy,” J. Heat Transf., vol. 99, no. 4, pp. 620–627, Nov. 1977. DOI: 10.1115/1.3450752.
  • B. Johnson, W. Tian, K. Zhang, and H. Hu, “An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques,” Int. J. Heat Mass Transf., vol. 76, pp. 337–349, Sept. 2014. DOI: 10.2514/6.2013-603.
  • D. Lakehal, “Near-wall modeling of turbulent convective heat transport in film cooling of turbine blades with the aid of direct numerical simulation data,” J. Turbomach., vol. 124, no. 3, pp. 485–498, Jul. 2002. DOI: 10.1115/1.1482408.
  • D. Lakehal, G. S. Theodoridis, and W. Rodi, “Three-dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model,” Int. J. Heat Fluid Flow, vol. 22, no. 2, pp. 113–122, Apr. 2001. DOI: 10.1016/S0142-727X(00)00084-9.
  • M. Silieti, E. Divo, and A. J. Kassab, “The effect of conjugate heat transfer on film cooling effectiveness,” Numer. Heat Transf. B: Fundam., vol. 56, no. 5, pp. 335–350, Jan. 2010. DOI: 10.1080/10407790903508046.
  • S. Majumdar, W. Rodi, and J. Zhu, “Three-dimensional finite-volume method for incompressible flows with complex boundaries,” J. Fluids Eng. Trans. ASME, vol. 114, no. 4, pp. 496–503, Dec. 1992. DOI: 10.1115/1.2910060.
  • C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA J., vol. 21, no. 11, pp. 1525–1532, Nov. 1983. DOI: 10.2514/3.8284.
  • J. P. Van Doormaal and G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transf., vol. 7, no. 2, pp. 147–163, Apr. 1984. DOI: 10.2514/3.8284.
  • H. L. Stone, “Iterative solution of implicit approximations of multidimensional partial differential equations,” SIAM J. Numer. Anal., vol. 5, no. 3, pp. 530–558, Sept. 1968. DOI: 10.1137/0705044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.