Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
130
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Bioconvective unsteady fluid flow across concentric stretching cylinders with thermal-diffusion and diffusion-thermo effects

, ORCID Icon, , &
Pages 536-552 | Received 27 Dec 2022, Accepted 26 Feb 2023, Published online: 27 Mar 2023

References

  • M. Sankar, H. K. Swamy, Q. Al-Mdallal, and A. Wakif, “Non-Darcy nanoliquid buoyant flow and entropy generation analysis in an inclined porous annulus: Effect of source-sink arrangement,” Alex. Eng. J., vol. 68, pp. 239–261, 2023. DOI: 10.1016/j.aej.2023.01.016.
  • S. Gouran, S. Mohsenian, and S. E. Ghasemi, “Theoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques,” Alex. Eng. J., vol. 61, no. 4, pp. 3237–3248, 2022. DOI: 10.1016/j.aej.2021.08.047.
  • A. Miles and R. Bessaïh, “Heat transfer and entropy generation analysis of three-dimensional nanofluids flow in a cylindrical annulus filled with porous media,” Int. Commun. Heat Mass Transf., vol. 124, pp. 105240, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105240.
  • A. Shahsavar, M. Rashidi, C. Yıldız, and M. Arıcı, “Natural convection and entropy generation of Ag-water nanofluid in a finned horizontal annulus: A particular focus on the impact of fin numbers,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105349, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105349.
  • K. Thriveni and B. Mahanthesh, “Sensitivity computation of nonlinear convective heat transfer in hybrid nanomaterial between two concentric cylinders with irregular heat sources,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105677, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105677.
  • M. Mirzaie and E. Lakzian, “Natural convection of nanofluid-filled annulus with cooled and heated sources and rotating cylinder in the water near the density inversion point,” Eur. Phys. J. Plus, vol. 136, no. 8, pp. 1–20, 2021. DOI: 10.1140/epjp/s13360-021-01568-9.
  • F. Mebarek-Oudina, R. Bessaih, B. Mahanthesh, A. J. Chamkha, and J. Raza, “Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal,” HFF, vol. 31, no. 4, pp. 1172–1189, 2021. DOI: 10.1108/HFF-05-2020-0321.
  • A. Alsaedi, K. Muhammad, and T. Hayat, “Numerical study of MHD hybrid nanofluid flow between two coaxial cylinders,” Alex. Eng. J., vol. 61, no. 11, pp. 8355–8362, 2022. DOI: 10.1016/j.aej.2022.01.067.
  • Shabnam, S. Mei, M. S. Khan, O. Mahmoud, and A. M. Galal, “Numerical investigation of a squeezing flow between concentric cylinders under the variable magnetic field of intensity,” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022. DOI: 10.1038/s41598-022-13050-2.
  • L. K. Saha, S. K. Bala, and N. C. Roy, “Natural convection of dusty nanofluids within a concentric annulus,” Eur. Phys. J. Plus, vol. 135, no. 9, pp. 1–20, 2020. DOI: 10.1140/epjp/s13360-020-00759-0.
  • M. S. Krakov and I. V. Nikiforov, “Influence of the shape of the inner boundary on thermomagnetic convection in the annulus between horizontal cylinders: Heat transfer enhancement,” Int. J. Therm. Sci., vol. 153, pp. 106374, 2020. DOI: 10.1016/j.ijthermalsci.2020.106374.
  • Y. Meng and B. Li, “On viscoelastic fluid in a vertical porous media channel with Soret and Dufour effects,” Appl. Math. Lett., vol. 124, pp. 107656, 2022. DOI: 10.1016/j.aml.2021.107656.
  • N. A. Ahammad and M. V. Krishna, “Numerical investigation of chemical reaction, Soret and Dufour impacts on MHD free convective gyrating flow through a vertical porous channel,” Case Stud. Therm. Eng., vol. 28, pp. 101571, 2021. DOI: 10.1016/j.csite.2021.101571.
  • M. Hussain, U. Farooq, G. Bano, J. Cui, and T. Muhammad, “Bioconvection unsteady magnetized flow in a horizontal channel with Dufour and Soret effects,” Math. Probl. Eng., vol. 2022, pp. 1–15, 2022. DOI: 10.1155/2022/4771282.
  • N. A. Mat Noor, S. Shafie, Y. S. Hamed, and M. A. Admon, “Soret and Dufour effects on MHD squeezing flow of Jeffrey fluid in horizontal channel with thermal radiation,” PLoS One, vol. 17, no. 5, pp. e0266494, 2022. DOI: 10.1371/journal.pone.0266494.
  • H. Ullah, R. A. Shah, M. S. Khan, and S. Mei, Parametric analysis of Dufour and Soret effects in ionicliquid flow between parallel concentric cylinders, 2022. DOI: 10.21203/rs.3.rs-1269401/v1.
  • B. Ahmed, F. Akbar, A. Ghaffari, S. Ullah Khan, M. I. Khan and Y. Dharmendar Reddy, “Soret and Dufour aspects of the third-grade fluid due to the stretching cylinder with the Keller box approach,” Waves Random Complex Media, pp. 1–13, 2022. DOI: 10.1080/17455030.2022.2085891.
  • K. Bhaskar, K. Sharma, and K. Bhaskar, “Cross-diffusion and chemical reaction effects of a MHD nanofluid flow inside a divergent/convergent channel with heat source/sink,” J. Therm. Anal. Calorim., vol. 148, no. 2, pp. 573–588, 2023. DOI: 10.1007/s10973-022-11525-y.
  • W. Khan and H. Rasheed, A numerical study of two-dimensional magnetized bioconvective unsteady fluid flow in two stretching parallel plates with internal heating and chemical reaction effects, 2022. DOI: 10.21203/rs.3.rs-1697592/v1.
  • S. S. Shah, H. F. Öztop, R. Ul-Haq, and N. Abu-Hamdeh, “Natural convection process endorsed in coaxial duct with Soret/Dufour effect,” HFF, vol. 33, no. 1, pp. 96–119, 2023. DOI: 10.1108/HFF-02-2022-0106.
  • K. M. Lakshmi, D. Laroze, and P. G. Siddheshwar, “Natural convection of a binary liquid in cylindrical porous annuli/rectangular porous enclosures with cross-diffusion effects under local thermal non-equilibrium state,” Int. J. Heat Mass Transf., vol. 184, pp. 122294, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122294.
  • M. Ramzan, N. Shahmir, and H. S. Ghazwani, “Stefan blowing impact on bioconvective Maxwell nanofluid flow over an exponentially stretching cylinder with variable thermal conductivity,” Waves Random Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2102269.
  • H. Waqas, T. Muhammad, S. Hussain, S. Yasmin, and G. Rasool, “Consequences of Fourier’s and Fick’s laws in bioconvective couple stress nanofluid flow configured by an inclined stretchable cylinder,” Int. J. Mod. Phys. B, vol. 35, no. 17, pp. 2150176, 2021. DOI: 10.1142/S0217979221501769.
  • X. Y. Li et al., “Simultaneous features of Wu’s slip, nonlinear thermal radiation and activation energy in unsteady bio-convective flow of Maxwell nanofluid configured by a stretching cylinder,” Chinese J. Phys., vol. 73, pp. 462–478, 2021. DOI: 10.1016/j.cjph.2021.07.033.
  • H. Waqas, M. Imran, and M. M. Bhatti, “Influence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotating cylinder,” Chinese J. Phys., vol. 68, pp. 558–577, 2020. DOI: 10.1016/j.cjph.2020.10.014.
  • Y. Q. Song et al., “Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model,” Alex. Eng. J., vol. 60, no. 5, pp. 4663–4675, 2021. DOI: 10.1016/j.aej.2021.03.056.
  • Z. Abdelmalek et al., “A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip,” J. Therm. Anal. Calorim., vol. 144, no. 1, pp. 205–217, 2021. DOI: 10.1007/s10973-020-09450-z.
  • A. Aldabesh et al., “Unsteady transient slip flow of Williamson nanofluid containing gyrotactic microorganism and activation energy,” Alex. Eng. J., vol. 59, no. 6, pp. 4315–4328, 2020. DOI: 10.1016/j.aej.2020.07.036.
  • M. B. Henda et al., “Applications of activation energy along with thermal and exponential space-based heat source in bioconvection assessment of magnetized third grade nanofluid over stretched cylinder/sheet,” Case Stud. Therm. Eng., vol. 26, pp. 101043, 2021. DOI: 10.1016/j.csite.2021.101043.
  • C. Liu et al., “Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection,” Sci. Rep., vol. 11, no. 1, pp. 1–21, 2021. DOI: 10.1038/s41598-021-88947-5.
  • R. R. Kairi, S. Roy, and S. Raut, “Stratified thermosolutal Marangoni bioconvective flow of gyrotactic microorganisms in Williamson nanofluid,” Eur. J. Mech.-B/Fluids, vol. 97, pp. 40–52, 2023. DOI: 10.1016/j.euromechflu.2022.09.004.
  • S. Roy, S. Raut, and R. R. Kairi, “Thermosolutal marangoni bioconvection of a non-Newtonian nanofluid in a stratified medium,” J. Heat Transf., vol. 144, no. 9, pp. 093601, 2022. DOI: 10.1115/1.4054770.
  • R. R. Kairi, S. Shaw, S. Roy, and S. Raut, “Thermosolutal marangoni impact on bioconvection in suspension of gyrotactic microorganisms over an inclined stretching sheet,” J. Heat Transf., vol. 143, no. 3, 2021. DOI: 10.1115/1.4048946.
  • V. M. Magagula, S. Shaw, and R. R. Kairi, “Double dispersed bioconvective Casson nanofluid fluid flow over a nonlinear convective stretching sheet in suspension of gyrotactic microorganism,” Heat Transf., vol. 49, no. 5, pp. 2449–2471, 2020. DOI: 10.1002/htj.21730.
  • S. M. R. S. Naqvi, T. Muhammad, and M. Asma, “Hydromagnetic flow of Casson nanofluid over a porous stretching cylinder with Newtonian heat and mass conditions,” Phys. A: Stat. Mech. Appl., vol. 550, pp. 123988, 2020. DOI: 10.1016/j.physa.2019.123988.
  • R. A. Shah and I. Ali, “Theoretical analysis of unsteady flow between two stretching cylinders with variable physical properties,” Global Sci. J., vol. 8, no. 11, pp. 772–784, 2020.
  • A. A. Shaaban and M. Y. Abou-Zeid, “Effects of heat and mass transfer on MHD peristaltic flow of a non-Newtonian fluid through a porous medium between two coaxial cylinders,” Math. Prob. Eng., vol. 2013, pp. 1–11, 2013. DOI: 10.1155/2013/819683.
  • R. Ellahi, A. Zeeshan, K. Vafai, and H. U. Rahman, “Series solutions for magnetohydrodynamic flow of non-Newtonian nanofluid and heat transfer in coaxial porous cylinder with slip conditions,” Proc. Inst. Mech. Eng. N: J. Nanoeng. Nanosyst., vol. 225, no. 3, pp. 123–132, 2011. DOI: 10.1177/1740349911429759.
  • Y.-Q. Song et al., “Unsteady mixed convection flow of magneto-Williamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features,” Alex. Eng. J., vol. 61, no. 1, pp. 195–206, 2022. DOI: 10.1016/j.aej.2021.04.089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.