Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
246
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical investigation of mixed convection from rectangular cylinders subjected to upper cross flow

ORCID Icon, &
Pages 570-591 | Received 26 Oct 2022, Accepted 26 Feb 2023, Published online: 01 May 2023

References

  • O. Garbrecht, “Large eddy simulation of three-dimensional mixed convection on a vertical plate,” Ph.D. thesis, RWTH Aachen University, August 2017. DOI: 10.18154/RWTH-2018-221554.
  • L. E. Olsen, J. P. Abraham, L. Cheng, J. M. Gorman, and E. M. Sparrow, “Chapter Six – Summary of forced-convection fluid flow and heat transfer for square cylinders of different aspect ratios ranging from the cube to a two-dimensional cylinder,” Adv. Heat Trans., vol. 51, pp. 351–457, 2019. DOI: 10.1016/bs.aiht.2019.05.002.
  • J. Courchesne and A. Laneville, “A comparison of correction methods used in the evaluation of drag coefficient measurements for two-dimensional rectangular cylinders,” J. Fluids Eng., vol. 101, no. 4, pp. 506–510, 1979. DOI: 10.1115/1.3449019.
  • K. G. Ranga Raju and Y. Singh, “Blockage effects on drag of sharp-edged bodies,” J. Ind. Aerodyn., vol. 1, pp. 301–309, 1975. DOI: 10.1016/0167-6105(75)90023-9.
  • R. W. Davis, E. F. Moore, and L. P. Purtell, “A numerical-experimental study of confined flow around rectangular cylinders,” Phys. Fluids, vol. 27, no. 1, pp. 46–58, 1984. DOI: 10.1063/1.864486.
  • G. R. Ahmed and M. M. Yovanovich, “Experimental study of forced convection from isothermal circular and square cylinders and toroids,” J. Heat Transf., vol. 119, no. 1, pp. 70–79, 1997. DOI: 10.1115/1.2824102.
  • L. Carassale, A. Freda, and M. Marre-Brunenghi, “Experimental investigation on the aerodynamic behavior of square cylinders with rounded edges,” J. Fluids Struct., vol. 44, pp. 195–204, 2014. DOI: 10.1016/j.jfluidstructs.2013.10.010.
  • S. M. Elsherbiny, M. A. Teamah, and A. R. Moussa, “Experimental mixed convection heat transfer from an isothermal horizontal square cylinder,” Exp. Therm. Fluid Sci., vol. 82, pp. 459–471, 2017. DOI: 10.1016/j.expthermflusci.2016.12.002.
  • M. Ali, “Natural convection heat transfer along vertical rectangular ducts,” Heat Mass Transf., vol. 46, no. 2, pp. 255–266, 2009. DOI: 10.1007/s00231-009-0561-2.
  • O. Zeitoun and M. Ali, “Numerical investigation of natural convection around isothermal horizontal rectangular ducts,” Numer. Heat Tr. A-Appl., vol. 50, no. 2, pp. 189–204, 2006. DOI: 10.1080/10407780600604958.
  • A. Okajima, “Numerical simulation of flow around rectangular cylinders,” J. Wind Eng. Ind. Aerodyn., vol. 33, no. 12, pp. 171–180, 1990. DOI: 10.1016/0167-6105(90)90033-9.
  • A. Mukhopadhyay, G. Biswas, and T. Sundararajan, “Numerical investigation of confined wakes behind a square cylinder in a channel,” Int. J. Numer. Meth. Fluids, vol. 14, no. 12, pp. 1473–1484, 1992. DOI: 10.1002/fld.1650141208.
  • A. Sohankar, C. Norberg, and L. Davidson, “Low-Reynolds number flow around a square cylinder at incidence study of blockage onset of vortex shedding and outlet boundary condition,” Int. J. Numer. Meth. Fluids, vol. 26, no. 1, pp. 39–56, 1998. DOI: 10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P.
  • A. Sohankar, C. Norberg, and L. Davidson, “Simulations of three-dimensional flow around a square cylinder at moderate Reynolds numbers,” Phys. Fluids, vol. 11, no. 2, pp. 288–306, 1999. DOI: 10.1063/1.869879.
  • A. K. Saha, G. Biswas, and K. Muralidhar, “Three-dimensional study of flow past a square cylinder at low Reynolds number,” Int. J. Heat Fluid Flow, vol. 24, no. 1, pp. 54–66, 2003. DOI: 10.1016/S0142-727X(02)00208-4.
  • A. Kumar and R. K. Ray, “Numerical study of shear flow past a square cylinder at Reynolds numbers 100, 200,” Proc. Eng., vol. 127, pp. 102–109, 2015. DOI: 10.1016/j.proeng.2015.11.432.
  • C. Dalton and W. Zheng, “Numerical solutions of a viscous uniform approach flow past square and diamond cylinders,” J. Fluids Struct., vol. 18, no. 34, pp. 455–465, 2003. DOI: 10.1016/j.jfluidstructs.2003.07.010.
  • S. Ul. Islam, R. Manzoor, Z. C. Ying, and Z. Ul Islam, “Numerical investigation of different aspect ratios for flow past three inline rectangular cylinders,” J. Braz. Soc. Mech. Sci., vol. 40, pp. 1–19, 2018. DOI: 10.1007/s40430-018-1334-y.
  • A. K. Sahu, R. P. Chhabra, and V. Eswaran, “Two-dimensional unsteady laminar flow of a power law fluid across a square cylinder,” J. Non-Newton Fluid, vol. 160, no. 23, pp. 157–167, 2009. DOI: 10.1016/j.jnnfm.2009.03.010.
  • A. K. Saha, “Three-dimensional numerical study of flow and heat transfer from a cube placed in a uniform flow,” Int. J. Heat Fluid Flow, vol. 26, no. 1, pp. 80–94, 2006. DOI: 10.1016/j.ijheatfluidflow.2005.05.002.
  • A. Sharma and V. Eswaran, “Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime,” Numer. Heat Tr. A-Appl., vol. 45, no. 3, pp. 247–269, 2004. DOI: 10.1080/10407780490278562.
  • T. Ambreen and M. H. Kim, “Flow and heat transfer characteristics over a square cylinder with corner modifications,” Int. J. Heat Mass Transf., vol. 117, pp. 50–57, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.132.
  • A. K. Dhiman, N. Anjaiah, R. P. Chhabra, and V. Eswaran, “Mixed convection from a heated square cylinder to Newtonian and power-law fluids,” J. Fluids Eng., vol. 129, no. 4, pp. 506–513, 2007. DOI: 10.1115/1.2436586.
  • A. Dhiman, N. Sharma, and S. Kumar, “Wall effects on the cross-buoyancy around a square cylinder in the steady regime,” Braz. J. Chem. Eng., vol. 29, no. 2, pp. 253–264, 2012. DOI: 10.1590/S0104-66322012000200006.
  • D. Chatterjee and B. Mondal, “Effect of thermal buoyancy on vortex shedding behind a square cylinder in cross flow at low Reynolds numbers,” Int. J. Heat Mass Transf., vol. 54, no. 2526, pp. 5262–5274, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.08.016.
  • J. P. Dulhani, S. Sarkar, and A. Dalal, “Effect of angle of incidence on mixed convective wake dynamics and heat transfer past a square cylinder in cross flow at Re = 100,” Int. J. Heat Mass Transf., vol. 74, pp. 319–332, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.021.
  • Y. Derouich, Z. Nasri, S. Abide, and A. H. Laatar, “Inclination effects on heat transfer by an oscillating square cylinder in channel flow,” Int. J. Heat Mass Transf., vol. 125, pp. 1105–1120, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.103.
  • N. Mahir and Z. Altaç, “Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow,” Int. J. Heat Mass Transf., vol. 75, pp. 103–121, 2019. DOI: 10.1016/j.ijheatfluidflow.2018.11.013.
  • R. Ali and A. Singh, “Numerical study of fluid dynamics and heat transfer characteristics for the flow past a heated square cylinder,” Jordan J. Mech. Ind. Eng., vol. 15, no. 4, pp. 357–376, 2021.
  • A. Mashhadi, A. Sohankar, and M. M. Alam, “Flow over rectangular cylinder: Effects of cylinder aspect ratio and Reynolds number,” Int. J. Mech. Sci., vol. 195, pp. 106264, 2021. DOI: 10.1016/j.ijmecsci.2020.106264.
  • A. Mashhadi and A. Sohankar, “Two- and three-dimensional simulations of flow and heat transfer around rectangular cylinders,” Comput. Fluids, vol. 249, pp. 105689, 2022. DOI: 10.1016/j.compfluid.2022.105689.
  • A. Sharma and V. Eswaran, “Effect of aiding and opposing buoyancy on the heat and fluid flow across a square cylinder at Re = 100,” Numer. Heat Tr. A-Appl., vol. 45, no. 6, pp. 601–624, 2004. DOI: 10.1080/10407780490277798.
  • S. Jassim, “Numerical study of the mixed convection flow over a square cylinder,” Iraqi J. Chem. Pet. Eng., vol. 11, no. 1, pp. 29–45, 2010. DOI: 10.31699/IJCPE.
  • N. Sharma, A. K. Dhiman, and S. Kumar, “Mixed convection flow and heat transfer across a square cylinder under the influence of aiding buoyancy at low Reynolds numbers,” Int. J. Heat Mass Transf., vol. 55, no. 910, pp. 2601–2614, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.12.034.
  • S. Moulai, A. Korichi, and G. Polidori, “Aided mixed convection past a heated square cylinder at low blockage ratio,” J. Appl. Fluid Mech., vol. 9, pp. 303–310, 2016. DOI: 10.18869/ACADPUB.JAFM.68.224.22891.
  • E. M. Sparrow, J. P. Abraham, and J. C. K. Tong, “Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow,” Int. J. Heat Mass Transf., vol. 47, no. 24, pp. 5285–5296, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.06.024.
  • M. M. Rai and P. Moin, “Direct simulation of turbulent flow using finite-difference schemes,” J. Comput. Phys., vol. 96, no. 1, pp. 15–53, 1991. DOI: 10.1016/0021-9991(91)90264-L.
  • C. Lei, L. Cheng, S. W. K. Armfield, and K. Kavanagh, “Vortex shedding suppression for flow over a circular cylinder near a plane boundary,” Ocean Eng., vol. 27, no. 10, pp. 1109–1127, 2000. DOI: 10.1016/S0029-8018(99)00033-5.
  • S. Sen, S. Mittal, and G. Biswas, “Flow past a square cylinder at low Reynolds numbers,” Int. J. Numer. Meth. Fluids, vol. 67, no. 9, pp. 1160–1174, 2011. DOI: 10.1002/fld.2416.
  • E. A. Merritt et al., Gnuplot. An Interactive Plotting Program. Available: http://www.gnuplot.info/
  • K. Chang and J. Sa, “The effect of buoyancy on vortex shedding in the near wake of a circular cylinder,” J. Fluid Mech., vol. 220, pp. 253–266, 1990. DOI: 10.1017/S002211209000324X.
  • R. Ali and N. Hasan, “Steady and unsteady flow regimes in two-dimensional mixed convective flow of air past a heated square cylinder,” Int. J. Mech. Sci., vol. 175, pp. 105533, 2020. DOI: 10.1016/j.ijmecsci.2020.105533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.