Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
73
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Entropy production evaluation of a diabatic conical funnel with surface radiation in an IRS device

, &
Pages 592-608 | Received 22 Nov 2022, Accepted 20 Feb 2023, Published online: 21 Mar 2023

References

  • A. M. Birk and W. R. Davis, “Suppressing the infrared signatures of marine gas turbines,” J. Eng. Gas Turbines Power, vol. 111, no. 1, pp. 123–129, 1989. DOI: 10.1115/1.3240210.
  • S. F. Wang and L. G. Li, “Investigations of flows in a new infrared suppressor,” Appl. Therm. Eng., vol. 26, pp. 36–45, 2006. DOI: 10.1016/j.applthermaleng.2005.04.011.
  • Z. Shaorong, D. Zhaohui, C. Hanping, and Z. Fangyuan, “Numerical and experimental study on the suppression for the infrared signatures of a marine gas turbine exhaust system,” presented at the Proc. ASME Turbo Expo, p. GT-0322, V001T02A002, 2000. DOI: 10.1115/2000-GT-0322.
  • J. H. Im and S. J. Song, “Mixing and entrainment characteristics in circular short ejectors,” J. Fluids Eng. Trans. ASME, vol. 137, no. 5, pp. 051103, 2015. DOI: 10.1115/1.4029412.
  • T. Sun, Y. Luan, L. Sun, and P. Sun, “Research on Characteristics of a New Marine Gas Turbine Exhaust Ejector Device,” presented at the Proc. ASME Turbo Expo, pp. GT2016-57214, V001T22A006, 2016. DOI: 10.1115/GT2016-57214.
  • G. A. Rao and S. P. Mahulikar, “New criterion for aircraft susceptibility to infrared guided missiles,” Aerosp. Sci. Technol., vol. 9, no. 8, pp. 701–712, 2005. DOI: 10.1016/j.ast.2005.07.005.
  • N. Baranwal and S. P. Mahulikar, “Review of Infrared signature suppression systems using optical blocking method,” Def. Technol., vol. 15, no. 3, pp. 432–439, 2019. DOI: 10.1016/j.dt.2018.12.002.
  • D. P. Mishra and S. K. Dash, “Numerical investigation of air suction through the louvers of a funnel due to high velocity air jet,” Comput. Fluids, vol. 39, no. 9, pp. 1597–1608, 2010. DOI: 10.1016/j.compfluid.2010.05.012.
  • A. K. Barik, S. K. Dash, and A. Guha, “Experimental and numerical investigation of air entrainment into an infrared suppression device,” Appl. Therm. Eng., vol. 75, pp. 33–44, 2015. DOI: 10.1016/j.applthermaleng.2014.05.042.
  • A. K. Barik, S. K. Dash, and A. Guha, “New correlation for prediction of air entrainment into an Infrared Suppression (IRS) device,” Appl. Ocean Res., vol. 47, pp. 303–312, 2014. DOI: 10.1016/j.apor.2014.06.007.
  • A. K. Barik, S. K. Dash, and A. Guha, “Entrainment of air into an infrared suppression (IRS) device using circular and non-circular multiple nozzles,” Comput. Fluids, vol. 114, pp. 26–38, 2015. DOI: 10.1016/j.compfluid.2015.02.016.
  • V. R. Ganguly and S. K. Dash, “Comparison between a conventional and a new IRS device in terms of air entrainment: An experimental and numerical analysis,” J. Sh. Res., vol. 64, no. 04, pp. 357–371, 2019. DOI: 10.5957/JOSR.06190034.
  • L. Singh, S. N. Singh, and S. S. Sinha, “Effect of slot-guidance and slot-area on air entrainment in a conical ejector diffuser for infrared suppression,” J. Appl. Fluid Mech., vol. 12, no. 4, pp. 1301–1317, 2019. DOI: 10.29252/jafm.12.04.29326.
  • A. Bejan, “Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes,” J. Appl. Phys., vol. 79, pp. 1191, 1996. DOI: 10.1063/1.362674.
  • A. Sakly and F. Ben Nejma, “Heat and mass transfer of combined forced convection and thermal radiation within a channel: Entropy generation analysis,” Appl. Therm. Eng., vol. 171, pp. 114903, 2020. DOI: 10.1016/j.applthermaleng.2020.114903.
  • W. Wang et al., “Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes,” Numer. Heat Transf. Part A Appl., vol. 73, no. 11, pp. 788–805, 2018. DOI: 10.1080/10407782.2018.1459137.
  • A. Mukhopadhyay, “Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources,” Int. Commun. Heat Mass Transf., vol. 37, no. 7, pp. 867–872, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.05.007.
  • B. A. K. Abu-Hijleh and W. N. Heilen, “Entropy generation due to laminar natural convection over a heated rotating cylinder,” Int. J. Heat Mass Transf., vol. 42, no. 22, pp. 4225–4233, 1999. DOI: 10.1016/S0017-9310(99)00078-2.
  • J. R. Senapati, S. K. Dash, and S. Roy, “Entropy generation in laminar and turbulent natural convection heat transfer from vertical cylinder with annular fins,” J. Heat Transf., vol. 139, no. 4, pp. 1–13, 2017. DOI: 10.1115/1.4035355.
  • C. K. Chen, H. Y. Lai, and C. C. Liu, “Numerical analysis of entropy generation in mixed convection flow with viscous dissipation effects in vertical channel,” Int. Commun. Heat Mass Transf., vol. 38, no. 3, pp. 285–290, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.016.
  • R. S. Kaluri and T. Basak, “Entropy generation minimization versus thermal mixing due to natural convection in differentially and discretely heated square cavities,” Numer. Heat Transf. Part A Appl., vol. 58, no. 6, pp. 475–504, 2010. DOI: 10.1080/10407782.2010.511982.
  • R. L. Silva and E. C. Garcia, “Temperature and entropy generation behavior in rectangular ducts with 3-D heat transfer coupling (conduction and convection),” Int. Commun. Heat Mass Transf., vol. 35, no. 3, pp. 240–250, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.08.008.
  • S. Pati et al., “Optimal heating strategy for minimization of peak temperature and entropy generation for forced convective flow through a circular pipe,” Int. J. Heat Mass Transf., vol. 150, pp. 119318, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119318.
  • S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, and Q. M. Al-Mdallal, “Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids,” Sci. Rep., vol. 7, no. 1, pp. 1–13, 2017. DOI: 10.1038/s41598-017-01358-3.
  • N. S. Khan et al., “Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer,” Appl. Sci., vol. 7, no. 3, pp. 271, 2017. DOI: 10.3390/app7030271.
  • M. Sheikholeslami, Z. Shah, A. Shafee, I. Khan, and I. Tlili, “Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019. DOI: 10.1038/s41598-018-37964-y.
  • G. Aaiza, I. Khan, and S. Shafie, “Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–14, 2015. DOI: 10.1186/s11671-015-1144-4.
  • A. Hussanan, Z. Ismail, I. Khan, A. G. Hussein, and S. Shafie, “Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating,” Eur. Phys. J. Plus, vol. 129, no. 3, pp. 1–16, 2014. DOI: 10.1140/epjp/i2014-14046-x.
  • G. J. Baham and D. Mccallum, “Stack design technology for naval and merchant ships,” Soc. Nav. Archit. Mar. Eng., vol. 85, pp. 324–349, 1977.
  • A. Mukherjee, V. Chandrakar, and J. R. Senapati, “Flow and conjugate heat transfer with surface radiation characteristics of a real-scale infrared suppression device with conical funnels,” Int. Commun. Heat Mass Transf., vol. 123, pp. 105208, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105208.
  • A. Mukherjee, V. Chandrakar, and J. R. Senapati, “New correlations for flow and conjugate heat transfer with surface radiation characteristics of a real-scale infrared suppression system with conical funnels,” ASME. J. Heat Transf., vol. 143, no. 8, pp. 082101, 2021.
  • A. Mukherjee, V. Chandrakar, and J. R. Senapati, “Thermo-fluid characteristics of an IRS system with louvered cylindrical diathermic funnels considering surface radiation: A three-dimensional numerical exercise,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106132, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106132.
  • F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • A. K. Barik, A. Mukherjee, and P. Patro, “Heat transfer enhancement from a small rectangular channel with different surface protrusions by a turbulent cross flow jet,” Int. J. Therm. Sci., vol. 98, pp. 32–41, 2015. DOI: 10.1016/j.ijthermalsci.2015.07.003.
  • S. Saedodin and M. S. Motaghedi Barforoush, “Experimental and numerical investigations on enclosure pressure effects on radiation and convection heat losses from two finite concentric cylinders using two radiation shields,” Energy, vol. 90, no. 1, pp. 652–662, 2015. DOI: 10.1016/j.energy.2015.07.091.
  • V. Chandrakar, J. R. Senapati, and A. Mohanty, “Conjugate heat transfer due to conduction, natural convection, and radiation from a vertical hollow cylinder with finite thickness,” Numer. Heat Transf. Part A Appl., vol. 79, no. 6, pp. 463–487, 2020. DOI: 10.1080/10407782.2020.1847524.
  • A. Bejan and J. Kestin, “Entropy generation through heat and fluid flow,” J. Appl. Mech., vol. 50, no. 2, pp. 475, 1983. DOI: 10.1115/1.3167072.
  • H. Herwig and F. Kock, “Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems,” Heat Mass Transfer und Stoffuebertragung, vol. 43, pp. 207–215, 2007. DOI: 10.1007/s00231-006-0086-x.
  • V. R. Ganguly and S. K. Dash, “International Journal of Thermal Sciences Experimental and numerical study of air entrainment into a louvered conical IRS device and comparison with existing IRS devices,” Int. J. Therm. Sci., vol. 141, no. March, pp. 114–132, 2019. DOI: 10.1016/j.ijthermalsci.2019.03.034.
  • Z. Cao, Z. Wu, H. Luan, and B. Sunden, “Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts,” Numer. Heat Transf. Part A Appl., vol. 72, no. 1, pp. 1–19, 2017. DOI: 10.1080/10407782.2017.1353386.
  • G. Xie, Y. Song, and T. W. Simon, “Turbulent flow characteristics and heat transfer enhancement in a rectangular channel with elliptical cylinders and protrusions of various heights,” Numer. Heat Transf. Part A Appl., vol. 72, no. 6, pp. 417–432, 2017. DOI: 10.1080/10407782.2017.1386507.
  • L.-K. Yang, “Combined mixed convection and radiation in a vertical pipe,” Int. Commun. Heat Mass Transf., vol. 18, no. 4, pp. 419–430, 1991. DOI: 10.1016/0735-1933(91)90058-C.
  • W. Lakhal, S. Trabelsi, E. Sediki, and M. Moussa, “Combined thermal radiation and mixed convection in an inclined circular duct,” Am. J. Eng. Appl. Sci., vol. 2, no. 4, pp. 590–602, 2009. DOI: 10.3844/ajeassp.2009.590.602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.