Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
241
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical evaluation of air gap effect on double-glazed solar air heater performance

ORCID Icon & ORCID Icon
Pages 609-631 | Received 12 Sep 2022, Accepted 28 Feb 2023, Published online: 21 Mar 2023

References

  • T. P. Aghaei, “Solar electric and solar thermal energy: A summary of current technologies,” Global Energy Network Institute (GENI), pp. 1–40, 2014.
  • S. Faisal Ahmed et al., “Recent progress in solar water heaters and solar collectors: A comprehensive review,” Therm. Sci. Eng. Prog., vol. 25, pp. 100981, 2021. DOI: 10.1016/j.tsep.2021.100981.
  • S. A. Gandjalikhan-nassab and Y. Sheikh-nejad, “Exploitation of radiating gas in improving solar gas heater performance,” Energy Sources A: Recovery Util. Environ. Eff., pp. 1–18, 2021. DOI: 10.1080/15567036.2021.1960653.
  • P. K. Choudhury and D. C. Baruah, “Solar air heater for residential space heating,” Energy Ecol. Environ., vol. 2, no. 6, pp. 387–403, 2017. DOI: 10.1007/s40974-017-0077-4.
  • S. A. Gandjalikhan-nassab and M. MoeinAddini, “Performance augmentation of solar air heater for space heating using a flexible flapping guide winglet,” Iranian (Iranica) J. Energy Environ., vol. 12, no. 2, pp. 161–172, 2021. DOI: 10.5829/IJEE.2021.12.02.09.
  • F. Gulcimen, H. Karakaya, and A. Durmus, “Drying of sweet basil with solar air collectors,” Renew. Energy, vol. 93, pp. 77–86, 2016. DOI: 10.1016/j.renene.2016.02.033.
  • H. A. G. Elbasher, B. K. Abdalla, and A. A. Mohamed, “Design of hybrid industrial solar drying unit,” Eur. J. Eng. Technol. Res., vol. 4, no. 1, pp. 24–31, 2019. DOI: 10.24018/ejeng.2019.4.1.1046.
  • M. Z. Siddique et al., “Analytical modeling and performance analysis of a solar cooker cum dryer unit,” Energy Sources A: Recovery Util. Environ. Eff., pp. 1–26, 2022. DOI: 10.1080/15567036.2022.2025955.
  • A. Fouda, S. A. Nada, H. F. Elattar, S. Rubaiee, and A. Al-Zahrani, “Performance analysis of proposed solar HDH water desalination systems for hot and humid climate cities,” Appl. Therm. Eng., vol. 144, pp. 81–95, 2018. DOI: 10.1016/j.applthermaleng.2018.08.037.
  • G. B. Abdelaziz et al., “Humidification dehumidification saline water desalination system utilizing high frequency ultrasonic humidifier and solar heated air stream,” Therm. Sci. Eng. Prog., vol. 27, pp. 101144, 2022. DOI: 10.1016/j.tsep.2021.101144.
  • A. Saxena, V. Tirth, and G. Srivastava, “Design and performance analysis of a solar air heater with high heat storage,” Distrib. Gener. Altern. Energy J., vol. 29, no. 3, pp. 35–55, 2014. DOI: 10.1080/21563306.2014.10879016.
  • P. Dhiman and S. Singh, “Recyclic double pass packed bed solar air heaters,” Int. J. Therm. Sci., vol. 87, pp. 215–227, 2015. DOI: 10.1016/j.ijthermalsci.2014.08.017.
  • M. Hedayatizadeh, F. Sarhaddi, A. Safavinejad, F. Ranjbar, and H. Chaji, “Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater,” Energy, vol. 94, pp. 799–810, 2016. DOI: 10.1016/j.energy.2015.11.046.
  • M. W. Kareem, K. Habib, K. Sopian, and K. Irshad, “Performance evaluation of a novel multi-pass solar air heating collector,” Proc. Eng., vol. 148, pp. 638–645, 2016. DOI: 10.1016/j.proeng.2016.06.528.
  • H. Hassan and S. Abo-Elfadl, “Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate,” Renew. Energy, vol. 116, pp. 728–740, 2018. DOI: 10.1016/j.renene.2017.09.047.
  • T. Sachdev, V. K. Gaba, and A. K. Tiwari, “Performance analysis of desalination system working on humidification-dehumidification coupled with solar assisted air heater and wind tower: Closed and open water cycle,” Sol. Energy, vol. 205, pp. 254–262, 2020. DOI: 10.1016/j.solener.2020.04.083.
  • C. Sivakandhan, T. V. Arjunan, and M. M. Matheswaran, “Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness,” Renew. Energy, vol. 147, pp. 2345–2357, 2020. DOI: 10.1016/j.renene.2019.10.007.
  • A. Dehghani Rayeni and S. A. Gandjalikhan-nassab, “Effects of gas radiation on thermal performances of single and double flow plane solar heaters,” Int. J. Eng., vol. 33, no. 6, pp. 1156–1166, 2020. DOI: 10.5829/IJE.2020.33.06C.14.
  • M. M. M. Salih, O. R. Alomar, and H. N. S. Yassien, “Impacts of adding porous media on performance of double-pass solar air heater under natural and forced air circulation processes,” Int. J. Mech. Sci., vol. 210, pp. 106738, 2021. DOI: 10.1016/j.ijmecsci.2021.106738.
  • A. Ahmadkhani, G. Sadeghi, and H. Safarzadeh, “An in depth evaluation of matrix, external upstream and downstream recycles on a double pass flat plate solar air heater efficacy,” Therm. Sci. Eng. Prog., vol. 21, pp. 100789, 2021. DOI: 10.1016/j.tsep.2020.100789.
  • N. T. Luan and N. M. Phu, “First and second law evaluation of multipass flat-plate solar air collector and optimization using preference selection index method,” Math. Probl. Eng., vol. 2021, pp. 5563882, 2021. DOI: 10.1155/2021/5563882.
  • M. W. Kareem et al., “Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix,” Energy, vol. 245, pp. 123153, 2022. DOI: 10.1016/j.energy.2022.123153.
  • O. Prakash, A. Kumar, Samsher, K. Dey, and A. Aman, “Exergy and energy analysis of sensible heat storage based double pass hybrid solar air heater,” Sustain. Energy Technol. Assess., vol. 49, pp. 101714, 2022. DOI: 10.1016/j.seta.2021.101714.
  • F. Chabane, N. Moummi, S. Benramache, D. Bensahal, and O. Belahssen, “Collector efficiency by single pass of solar air heaters with and without using fins,” Eng. J., vol. 17, no. 3, pp. 43–55, 2013. DOI: 10.4186/ej.2013.17.3.43.
  • D. Bahrehmand and M. Ameri, “Energy and exergy analysis of different solar air collector systems with natural convection,” Renew. Energy, vol. 74, pp. 357–368, 2015. DOI: 10.1016/j.renene.2014.08.028.
  • P. Velmurugan and R. Kalaivanan, “Energy and exergy analysis in double-pass solar air heater,” Sādhanā, vol. 41, no. 3, pp. 369–376, 2016. DOI: 10.1007/s12046-015-0456-5.
  • S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, “Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators,” Int. Commun. Heat Mass Transf., vol. 50, pp. 34–43, 2014. DOI: 10.1016/j.icheatmasstransfer.2013.11.001.
  • C. Yıldırım, “Theoretical investigation of a solar air heater roughened by ribs and grooves,” J. Therm. Eng., vol. 4, no. 1, pp. 1702–1712, 2018. DOI: 10.18186/journal-of-thermal-engineering.365713.
  • Singh, S., “Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater,” Renew. Energy, vol. 145, pp. 1361–1387, 2020. DOI: 10.1016/j.renene.2019.06.137.
  • M. M. Alkilani, K. Sopian, S. B. Mat, and M. Alghoul, “Output air temperature prediction in a solar air heater integrated with phase change material,” Eur. J. Sci. Res., vol. 27, pp. 334–341, 2009.
  • A. Ghiami and S. Ghiami, “Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector,” Appl. Therm. Eng., vol. 133, pp. 797–808, 2018. DOI: 10.1016/j.applthermaleng.2017.11.111.
  • C. D. Ho, H. M. Yeh, T. W. Cheng, T. C. Chen, and R. C. Wang, “The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached,” Appl. Energy, vol. 86, no. 9, pp. 1470–1478, 2009. DOI: 10.1016/j.apenergy.2008.12.013.
  • H. M. Yeh, “Upward-type flat-plate solar air heaters attached with fins and operated by an internal recycling for improved performance,” J. Taiwan Inst. Chem. Eng., vol. 43, no. 2, pp. 235–240, 2012. DOI: 10.1016/j.jtice.2011.10.008.
  • M. Foruzan-nia, S. A. Gandjalikhan-nassab, and A. B. Ansari, “Numerical simulation of flow and thermal behavior of radiating gas flow in plane solar heaters,” J. Therm. Sci. Eng. Appl., vol. 12, no. 3, 2020. DOI: 10.1115/1.4044756.
  • S. Debnath, B. Das, P. R. Randive, and K. M. Pandey, “Performance analysis of solar air collector in the climatic condition of North Eastern India,” Energy, vol. 165, pp. 281–298, 2018. DOI: 10.1016/j.energy.2018.09.038.
  • R. Luampon and B. Krittakom, “A study thermal efficiency of solar air heater with wire mesh stainless installation: Using solar simulator,” J. Phys.: Conf. Ser., vol. 1039, pp. 012044, 2018. DOI: 10.1088/1742-6596/1039/1/012044.
  • S. Singh, A. Singh, and S. Chander, “Thermal performance of a fully developed serpentine wavy channel solar air heater,” J. Energy Storage, vol. 25, pp. 100896, 2019. DOI: 10.1016/j.est.2019.100896.
  • A. Gholami, Y. Ajabshirchi, and S. F. Ranjbar, “Thermo-economic optimization of solar air heaters with arcuate-shaped obstacles,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1395–1403, 2019. DOI: 10.1007/s10973-019-08273-x.
  • S. A. Kumar, P. S. Mohan Kumar, R. Sathyamurthy, and A. M. Manokar, “Experimental investigation on pyramid solar still with single and double collector cover-comparative study,” Heat Transf.-Asian Res., vol. 49, no. 1, pp. 103–119, 2020. DOI: 10.1002/htj.21601.
  • M. A. Neama and A. T. Mustafa, “Thermal behavior of natural convection flow in an inclined solar air heater,” J. Mech. Eng. Sci., vol. 14, no. 4, pp. 7569–7588, 2020. DOI: 10.15282/jmes.14.4.2020.22.0596.
  • L. Bencherif, T. Boussoukaia, and M. Benhammou, “Effect of the double glazing on the performance of an air solar collector,” Algerian J. Renew. Energy Sustain. Dev., vol. 2, no. 01, pp. 42–50, 2020. DOI: 10.46657/ajresd.2020.2.1.6.
  • C. Q. Chen et al., “Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors,” Energy, vol. 233, pp. 121087, 2021. DOI: 10.1016/j.energy.2021.121087.
  • A. Khanlari et al., “Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles,” Renew. Energy, vol. 187, pp. 586–602, 2022. DOI: 10.1016/j.renene.2022.01.074.
  • A. E. Gürel et al., “A detailed investigation of the temperature-controlled fluidized bed solar dryer: A numerical, experimental, and modeling study,” Sustain. Energy Technol. Assess., vol. 49, pp. 101703, 2022. DOI: 10.1016/j.seta.2021.101703.
  • A. Khanlari, A. D. Tuncer, F. Afshari, and G. Sözen, “Utilization of recyclable aluminum cans as fins in a vertical solar air heating system: An experimental and numerical study,” J. Build. Eng., vol. 63, pp. 105446, 2023. DOI: 10.1016/j.jobe.2022.105446.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. New York: John Wiley & Sons, 2011.
  • J. A. Duffie, W. A. Beckman, and N. Blair, Solar Engineering of Thermal Processes, Photovoltaics and Wind. New York: John Wiley & Sons, 2020.
  • F. Chabane, N. Moummi, and A. Brima, “Experimental study of thermal efficiency of a solar air heater with an irregularity element on absorber plate,” Int. J. Heat Technol., vol. 36, no. 3, pp. 855–860, 2018. DOI: 10.18280/ijht.360311.
  • R. Cheesewright, K. J. King, and S. Ziai, “Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows,” Amer. Soc. Mech. Eng., vol. 60, pp. 75–81, 1986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.