Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
106
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nanoparticle aggregation dynamics on convective heat transfer in third-grade slip flow: A heat transfer application

, , &
Pages 805-821 | Received 07 Nov 2022, Accepted 13 Mar 2023, Published online: 06 Apr 2023

References

  • M. G. Reddy and N. Sandeep, “Enhanced heat transfer in hydrodynamic non-Newtonian film flows past an extending cylinder: A hydrogen energy application,” Waves Random Complex Media, pp. 1–14, 2022. DOI: 10.1080/17455030.2022.2086322.
  • E. C. Okonkwo, I. Wole-Osho, I. W. Almanassra, Y. M. Abdullatif, and T. Al-Ansari, “An updated review of nanofluids in various heat transfer devices,” J. Therm. Anal. Calorim., vol. 145, no. 6, pp. 2817–2872, 2021. DOI: 10.1007/s10973-020-09760-2.
  • S. E. Ghasemi, S. Mohsenian, and A. A. Ranjbar, “Numerical analysis on heat transfer of parabolic solar collector operating with nanofluid using Eulerian two-phase approach,” Numer. Heat Transf. Part A Appl., vol. 80, no. 9, pp. 475–484, 2021. DOI: 10.1080/10407782.2021.1950412.
  • K. Swain and B. Mahanthesh, “Thermal enhancement of radiating magneto-nanoliquid with nanoparticles aggregation and joule heating: A three-dimensional flow,” Arab. J. Sci. Eng., vol. 46, no. 6, pp. 5865–5873, 2021. DOI: 10.1007/s13369-020-04979-5.
  • S. Dabiri and M. F. Rahimi, “Basic introduction of solar collectors and energy and exergy analysis of a heliostat plant,” presented at the 3rd International Conference and Exhibition on Solar Energy, ICESE-2016, University of Tehran, Tehran, Iran, 2016.
  • M. Farzinpour, D. Toghraie, B. Mehmandoust, F. Aghadavoudi, and A. Karimipour, “Molecular dynamics simulation of ferronanofluid behavior in a nanochannel in the presence of constant and time-dependent magnetic fields,” J. Therm. Anal. Calorim., vol. 141, no. 6, pp. 2625–2633, 2020. DOI: 10.1007/s10973-020-09846-x.
  • T. Sajid et al., “Study on heat transfer aspects of solar aircraft wings for the case of Reiner-Philippoff hybrid nanofluid past a parabolic trough: Keller box method,” Phys. Scr., vol. 96, no. 9, pp. 095220, 2021. DOI: 10.1088/1402-4896/ac0a2a.
  • H. Mohammed, H. Vuthaluru, and S. Liu, “Heat transfer augmentation of parabolic trough solar collector receiver’s tube using hybrid nanofluids and conical turbulators,” J. Taiwan Inst. Chem. Eng., vol. 125, pp. 215–242, 2021. DOI: 10.1016/j.jtice.2021.06.032.
  • H. Hassan, M. S. Yousef, M. Fathy, and M. S. Ahmed, “Impact of condenser heat transfer on energy and exergy performance of active single slope solar still under hot climate conditions,” Solar Energy, vol. 204, pp. 79–89, 2020. DOI: 10.1016/j.solener.2020.04.026.
  • M. Zaboli et al., “Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator,” Eur. Phys. J. Plus, vol. 136, no. 8, pp. 841, 2021. DOI: 10.1140/epjp/s13360-021-01807-z.
  • H. A. Wahab et al., “Numerical study for the effects of temperature dependent viscosity flow of non-Newtonian fluid with double stratification,” Appl. Sci., vol. 10, no. 2, pp. 708, 2020. DOI: 10.3390/app10020708.
  • Y. Q. Song et al., “Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface,” Case Stud. Therm. Eng., vol. 26, pp. 101050, 2021. DOI: 10.1016/j.csite.2021.101050.
  • F. Garoosi, “Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids,” Powder Technol., vol. 366, pp. 788–820, 2020. DOI: 10.1016/j.powtec.2020.03.032.
  • M. Bagheri Motlagh and M. Kalteh, “Molecular dynamics simulation of nanofluid convective heat transfer in a nanochannel: Effect of nanoparticles shape, aggregation and wall roughness,” J. Mol. Liq., vol. 318, pp. 114028, 2020. DOI: 10.1016/j.molliq.2020.114028.
  • Y. Jia, F. Ran, C. Zhu, and G. Fang, “Guiyin Fang, “Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant,” Sol. Energy, vol. 196, pp. 625–636, 2020. DOI: 10.1016/j.solener.2019.12.069.
  • M. Simonetti, F. Restagno, E. Sani, and M. Noussan, “Numerical investigation of direct absorption solar collectors (DASC), based on carbon-nanohorn nanofluids, for low temperature applications,” Sol. Energy, vol. 195, pp. 166–175, 2020. DOI: 10.1016/j.solener.2019.11.044.
  • E. G. Karvelas, N. K. Lampropoulos, L. T. Benos, T. Karakasidis, and I. E. Sarris, “On the magnetic aggregation of Fe3O4 nanoparticles,” Comput. Methods Prog. Biomed., vol. 198, pp. 105778, 2021.
  • H. Shi, Y. Zhao, and Z. Liu, “Numerical investigation of the secondary flow effect of lateral structure of micromixing channel on laminar flow,” Sens. Actuators B Chem., vol. 321, pp. 128503, 2020. DOI: 10.1016/j.snb.2020.128503.
  • B. Mahanthesh, “Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105521, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105521.
  • J. Mackolil and B. Mahanthesh, “Sensitivity analysis of Marangoni convection in TiO2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2085–2098, 2021. DOI: 10.1007/s10973-020-09642-7.
  • J. Chen, C. Y. Zhao, and B. X. Wang, “Effect of nanoparticle aggregation on the thermal radiation properties of nanofluids: An experimental and theoretical study,” Int. J. Heat Mass Transf., vol. 154, pp. 119690, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119690.
  • N. S. Khashi’ie, N. M. Arifin, E. H. Hafidzuddin, N. Wahi, and I. Pop, “Mixed convective stagnation point flow of a thermally stratified hybrid Cu-Al2O3/water nanofluid over a Permeable stretching/shrinking sheet,” ASM Sci. J., vol. 12, pp. 17–25, 2019.
  • J. Cui, A. Jan, U. Farooq, M. Hussain, and W. A. Khan, “Thermal analysis of radiative Darcy–Forchheimer Nanofluid flow across an inclined stretching surface,” Nanomaterials, vol. 12, no. 23, pp. 4291,2022, DOI: 10.3390/nano12234291.
  • M. Ahmed Jan, M. Mushtaq, U. Farooq, and M. Hussain, “Nonsimilar analysis of magnetized Sisko nanofluid flow subjected to heat generation/absorption and viscous dissipation,” J. Magn. Magn. Mater., vol. 564, no. 2, pp. 170153, 2022. DOI: 10.1016/j.jmmm.2022.170153.
  • M. Hussain, U. Farooq, and M. Sheremet, “Nonsimilar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106230, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106230.
  • S. Munir, M. I. Siddiqui, A. R. bin Abdul Aziz, M. Heikal, and U. Farooq, “Proper orthogonal decomposition based on vorticity: Application in a two-phase slug flow,” J. Fluids Eng., vol. 144, no. 4, pp. 041501, 2022.
  • M. Hussain, U. Farooq, G. Bano, J. Cui, and T. Muhammad, “Bioconvection unsteady magnetized flow in a horizontal channel with Dufour and Soret effects,” Math. Probl. Eng., vol. 2022, pp. 4771282, 2022. DOI: 10.1155/2022/4771282.
  • M. A. Amidu, Y. Addad, M. K. Riahi, and E. Abu-Nada, “Numerical investigation of nanoparticles slip mechanisms impact on the natural convection heat transfer characteristics of nanofluids in an enclosure,” Sci. Rep., vol. 11, no. 1, pp. 15678, 2021. DOI: 10.1038/s41598-021-95269-z.
  • M. K. Riahi, M. Ali, Y. Addad, and E. Abu-Nada, “Combined Newton–Raphson and streamlines-upwind Petrov–Galerkin iterations for nanoparticles transport in buoyancy-driven flow,” J. Eng. Math., vol. 132, no. 1, pp. 22, 2022. DOI: 10.1007/s10665-021-10205-4.
  • N. Saeed Khan et al., “Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer,” Appl. Sci., vol. 7, no. 3, pp. 271, 2017. DOI: 10.3390/app7030271.
  • N. S. Khashi’ie, N. Md Arifin, I. Pop, and N. Syahirah Wahid, “Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis,” Alex. Eng. J., vol. 59, no. 3, pp. 1787–1798, 2020.
  • S. A. Shehzad, T. Hussain, T. Hayat, M. Ramzan, and A. Alsaedi, “Boundary layer flow of third-grade nanofluid with Newtonian heating and viscous dissipation,” J. Cent. South Univ., vol. 22, no. 1, pp. 360–367, 2015. DOI: 10.1007/s11771-015-2530-x.
  • T. Hayat, R. Riaz, A. Aziz, and A. Alsaedi, “Analysis of entropy generation for MHD flow of third-grade nanofluid over a nonlinear stretching surface embedded in a porous medium,” Phys. Scr., vol. 94, no. 12, pp. 125703, 2019. DOI: 10.1088/1402-4896/ab3308.
  • T. Hussain, S. A. Shehzad, T. Hayat, and A. Alsaedi, “Hydromagnetic flow of third-grade nanofluid with viscous dissipation and flux conditions,” AIP Adv., vol. 5, no. 8, pp. 087169, 2015. DOI: 10.1063/1.4929725.
  • M. K. Nayak, G. C. Dash, and L. P. Singh, “Steady MHD flow and heat transfer of a third-grade fluid in wire coating analysis with temperature dependent viscosity,” Int. J. Heat Mass Transf., vol. 79, pp. 1087–1095, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.057.
  • T. Hayat, A. Shafiq, and A. Alsaedi, “MHD axisymmetric flow of third grade fluid by a stretching cylinder,” Alex. Eng. J., vol. 54, no. 2, pp. 205–212, 2015. DOI: 10.1016/j.aej.2015.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.