Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
101
Views
4
CrossRef citations to date
0
Altmetric
Research Article

An unsteady instigated induced magnetic field’s influence on the axisymmetric stagnation point flow of various shaped copper and silver nanomaterials submerged in ethylene glycol over an unsteady radial stretching sheet

ORCID Icon, &
Pages 822-844 | Received 03 Oct 2022, Accepted 13 Mar 2023, Published online: 07 Apr 2023

References

  • O. D. Makinde, W. A. Khan, and Z. H. Khan, “Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip radiative heat,” Proc. Inst. Mech. Eng. E J. Process Mech. Eng., vol. 231, no. 4, pp. 695–703, Aug. 2017. DOI: 10.1177/0954408916629506.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” presented at the Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, USA, SF, pp. 99–105, Oct. 1995.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf., vol. 128, no. 3, pp. 240–250, Mar. 2006. DOI: 10.1115/1.2150834.
  • M. I. Abdul Wahab, S. M. Thahab, and A. H. Dhiaa, “Experimental study of thermophysical properties of TiO2 nanofluid,” Iraqi J. Chem. Pet. Eng., vol. 17, no. 2, pp. 1–6, Jun. 2016.
  • M. Kole and T. K. Dey, “Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil,” Appl. Therm. Eng., vol. 56, no. 12, pp. 45–53, Jul. 2013. DOI: 10.1016/j.applthermaleng.2013.03.022.
  • H. A. Hejazi, M. I. Khan, A. Raza, K. Smida, S. U. Khan, and I. Tlili, “Inclined surface slip flow of nanoparticles with subject to mixed convection phenomenon: Fractional calculus applications,” J. Indian Chem. Soc., vol. 99, no. 7, pp. 100564, Jul. 2022. DOI: 10.1016/j.jics.2022.100564.
  • H. Vaidya et al., “Combined effects of the chemical reaction and variable thermal conductivity on MHD peristaltic flow of Phan-Thien-Tanner liquid through inclined channel,” Case Stud. Therm. Eng., vol. 36, pp. 102214, 2022. DOI: 10.1016/j.csite.2022.102214.
  • T. Iskander, D. Baleanu, S. M. Sajadi, F. Ghaemi, and M. A. Fagiry, “Numerical and experimental analysis of temperature distribution and melt flow in fibre laser welding of Inconel 625,” Int. J. Adv. Manuf. Technol., vol. 121, no. 12, pp. 765–784, Jul. 2022. DOI: 10.1007/s00170-022-09329-3.
  • K. Manoj et al., “Entropy optimised assisting and opposing non-linear radiative flow of hybrid nanofluid,” Waves Random Complex Media, pp. 1–22, Feb. 2022. DOI: 10.1080/17455030.2022.2032474.
  • F. Hedayati and G. Domairry, “Effects of nanoparticle migration and asymmetric heating on mixed convection of TiO2−H2O nanofluid inside a vertical microchannel,” Powder Technol., vol. 272, pp. 250–259, Mar. 2015. DOI: 10.1016/j.powtec.2014.12.003.
  • E. N. Maraj, Z. Iqbal, and S. Shaiq, “Extraordinary role of hydrogen possessions and viscosity variation in electrically conducting copper and silver nanoparticles inspired by mixed convection,” Int. J. Hydrog. Energy, vol. 43, no. 24, pp. 10915–10925, Jun. 2018. DOI: 10.1016/j.ijhydene.2018.05.021.
  • S. Shaiq, E. N. Maraj, R. Mehmood, and S. Ijaz, “Magnetohydrodynamics radiative dissipative slip flow of hydrogen-oxide (H2 O) infused with various shape tungsten, tin, and titanium (nanometer) particles over a nonlinear radial stretching surface,” Proc. Inst. Mech. Eng. Part E: J. Process Mech. Engg., vol. 236, no. 3, pp. 953–963, 2022. DOI: 10.1177/09544089211053440.
  • A. Shahzad et al., “Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet,” Sci. Rep., vol. 12, no. 1, pp. 14254, Aug. 2022. DOI: 10.1038/s41598-022-18049-3.
  • N. A. Zainal et al., “Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect,” Appl. Math. Mech.-Engl. Ed., vol. 42, no. 10, pp. 1511–1524, Sept. 2021. DOI: 10.1007/s10483-021-2781-7.
  • N. A. Zainal et al., “Unsteady MHD hybrid nanofluid flow towards a horizontal cylinder,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106020, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106020.
  • K. Hiemenz, “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder,” Dinglers Polytech., vol. 326, pp. 321–324, 1911.
  • C. Y. Wang, “Similarity stagnation point solutions of the Navier Stokes equations review and extension,” Eur. J. Mech. B/Fluids, vol. 27, no. 6, pp. 678–683, Nov. 2008. DOI: 10.1016/j.euromechflu.2007.11.002.
  • T. R. Mahapatra, S. K. Nandy, and A. S. Gupta, “Magneto hydrodynamic stagnation point flow of a power law fluid towards a stretching surface,” Int. J. Non-Linear. Mech., vol. 44, pp. 129–129, Mar. 2009. DOI: 10.1016/j.ijnonlinmec.2008.09.005.
  • T. Hayat and M. Nawaz, “Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 1, pp. 41–49, Jan. 2011. DOI: 10.1016/j.jtice.2010.04.006.
  • X.-H. Zhang et al., “MHD stagnation point flow of nanofluid over a curved stretching/shrinking surface subject to the influence of Joule heating and convective condition,” Case Stud. Therm. Eng., vol. 26, pp. 101184, Aug. 2021. DOI: 10.1016/j.csite.2021.101184.
  • N. A. Zainal et al., “Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point,” Appl. Math. Mech.-Engl. Ed., vol. 43, no. 4, pp. 547–556, Apr. 2022. DOI: 10.1007/s10483-022-2823-6.
  • M. G. Reddy and K. V. Reddy, “Influence of Joule heating on MHD peristaltic flow of a nanofluid with compliant walls,” Proc. Eng., vol. 127, pp. 1002–1009, Dec. 2015. DOI: 10.1016/j.proeng.2015.11.449.
  • M. Sheikholeslami and D. D. Ganji, “Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect,” J. Mol. Liq., vol. 224, pp. 526–537, Dec. 2016. DOI: 10.1016/j.molliq.2016.10.037.
  • N. S. Khashi’ie, N. M. Arifin, I. Pop, and N. S. Wahid, “Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis,” Alex. Eng. J., vol. 59, no. 3, pp. 1787–1798, Jun. 2020. DOI: 10.1016/j.aej.2020.04.048.
  • N. S. Khashi’ie, N. M. Arifin, and I. Pop, “Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating,” Alex. Eng. J., vol. 61, no. 3, pp. 1938–1945, Mar. 2022. DOI: 10.1016/j.aej.2021.07.032.
  • T. Naseem et al., “Joule heating and viscous dissipation effects in hydromagnetized boundary layer flow with variable temperature,” Case Stud. Therm. Eng., vol. 35, pp. 102083, Jul. 2022. DOI: 10.1016/j.csite.2022.102083.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, and F. Salah, “Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification,” Chin. J. Phys., vol. 55, no. 3, pp. 630–651, Jun. 2017. DOI: 10.1016/j.cjph.2017.04.001.
  • M. I. Khan, S. Qayyum, T. Hayat, M. I. Khan, and A. Alsaedi, “Entropy optimisation in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating,” Int. J. Heat Mass Transf., vol. 133, pp. 959–967, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.168.
  • L. Yan et al., “Dual solutions and stability analysis of magnetized hybrid nanofluid with joule heating and multiple slip conditions,” Process, vol. 8, no. 3, pp. 332, Mar. 2020. DOI: 10.3390/pr8030332.
  • B. Mahanthesh et al., “Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating,” J. Assoc. Arab Univ. Basic Appl. Sci., vol. 23, no. 1, pp. 75–84, Jun. 2017. DOI: 10.1016/j.jaubas.2016.05.004.
  • B. C. Sakiadis, “Boundary layer behavior on continuous solid surface,” AIChE J., vol. 7, no. 3, pp. 467–472, Mar. 1961. DOI: 10.1002/aic.690070108.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys., vol. 21, no. 4, pp. 645–647, Jul. 1970. DOI: 10.1007/BF01587695.
  • T. R. Mahapatra and A. S. Gupta, “Stagnation-point flow towards a stretching surface,” Can. J. Chem. Eng., vol. 81, no. 2, pp. 258–263, Apr. 2008. DOI: 10.1002/cjce.5450810210.
  • K. Das, P. R. Duari, and P. K. Kundu, “Nanofluid flow over an unsteady stretching surface in presence of thermal radiation,” Alex. Engg. J., vol. 53, no. 3, pp. 737–745, Sept. 2014. DOI: 10.1016/j.aej.2014.05.002.
  • C. Navier, “Mémoire sur les lois du Mouvement des Fluides,” Mem. Acad. R. Sci. Inst. France, vol. 6, pp. 389–440, Mar. 1823.
  • A. Salamah et al., “Investigation of phase change and heat transfer in water/copper oxide nanofluid enclosed in a cylindrical tank with porous medium: A molecular dynamics approach," Eng. Anal. Bound Elem., vol. 146, pp. 284–291, Jan. 2023. DOI: 10.1016/j.enganabound.2022.10.034.
  • O. D. Makinde et al., “Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium,” Phys. Fluid, vol. 30, no. 8, pp. 083601, Aug. 2018. DOI: 10.1063/1.5046331.
  • I. Pop, N. C. Roşca, and A. V. Roşca, “MHD stagnation-point flow and heat transfer of a nanofluid over a stretching/shrinking sheet with melting, convective heat transfer and second-order slip,” HFF, vol. 28, no. 9, pp. 2089–2110, Oct. 2018. DOI: 10.1108/HFF-12-2017-0488.
  • E. N. Maraj, S. Shaiq, and Z. Iqbal, “Assessment of hexahedron and lamina shaped graphene oxide nanoparticles suspended in ethylene and propylene glycol influenced by internal heat generation and thermal deposition,” J. Mol. Liq., vol. 262, pp. 275–284, Jul. 2018. DOI: 10.1016/j.molliq.2018.04.072.
  • D. Khan et al., “Thermal analysis of different shape nanoparticles on hyperthermia therapy on breast cancer in a porous medium: A fractional model,” Heliyan, vol. 8, no. 8, pp. e10170, Aug. 2022. DOI: 10.1016/j.heliyon.2022.e10170.
  • B. Sahoo, “Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet,” Appl. Math. Mech.-Engl. Ed., vol. 31, no. 2, pp. 159–173, Feb. 2010. DOI: 10.1007/s10483-010-0204-7.
  • H. Dessie and N. Kishan, “MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink,” Ain Shams Eng. J., vol. 5, no. 3, pp. 967–977, Sept. 2014. DOI: 10.1016/j.asej.2014.03.008.
  • T. Hayat, S. Asad, and A. Alsaedi, “Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation,” Appl. Math. Mech.-Engl. Ed., vol. 35, no. 6, pp. 717–728, May 2014. DOI: 10.1007/s10483-014-1824-6.
  • R. N. Barik and G. C. Dash, “Thermal radiation effect on an unsteady magneto- hydrodynamic flow past inclined porous heated plate in the presence of chemical reaction and viscous dissipation,” Appl. Math. Comput., vol. 226, pp. 423–434, Jan. 2014. DOI: 10.1016/j.amc.2013.09.077.
  • T. Hayat, M. Waqas, S. A. Shehzad, and A. Alsaedi, “MHD stagnation point flow of Jeffrey fluid by a radially stretching surface with viscous dissipation and Joule heating,” J. Hydrol. Hydromech., vol. 63, no. 4, pp. 311–317, Oct. 2015. DOI: 10.1515/johh-2015-0038.
  • A. S. Elfeshawey and S. E. Waheed, “Effect of viscous dissipation and thermal radiation on MHD flow and heat transfer for a power-law fluid with variable fluid properties over a permeable stretching sheet,” Waves Random Complex Media, 2022, DOI: 10.1080/17455030.2022.2053610.
  • N. A. Zainal et al., “Magnetic impact on the unsteady separated stagnation-point flow of hybrid nanofluid with viscous dissipation and Joule heating,” Math, vol. 10, no. 13, pp. 2356, Apr. 2022. DOI: 10.1080/17455030.2022.2053610.
  • Y. Koshiba, T. Matsushita, and M. Ishikawa, “Influence of induced magnetic field on large scale pulsed MHD generator,” presented at the 33rd Plasma Dynamics and Lasers. Conference, AIAA, Russia, vol. 640, pp. 2145–3002, 2002. DOI: 10.2514/6.2002-2145.
  • A. A. Raptis and V. M. Soundalgekar, “MHD flow past a steadily moving infinite vertical porous plate with constant heat flux,” Nuc. Eng. Des., vol. 72, no. 3, pp. 373–379, Oct. 1982. DOI: 10.1016/0029-5493(82)90050-4.
  • A. Raptis and C. V. Massalas, “Magneto-hydrodynamic flow past a plate by the presence of radiation,” Heat Mass Transf., vol. 34, no. 23, pp. 107–109, Oct. 1998. DOI: 10.1007/s002310050237.
  • O. A. Bég, A. Y. Bakier, V. R. Prasad, J. Zueco, and S. K. Ghosh, “Non-similar, laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field effects,” Int. J. Therm. Sci., vol. 48, no. 8, pp. 1596–1606, Aug. 2009. DOI: 10.1016/j.ijthermalsci.2008.12.007.
  • F. M. Ali, R. Nazar, N. M. Arifin, and I. Pop, “MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field,” Appl. Math. Mech.-Engl. Ed., vol. 32, no. 4, pp. 409–418, 2011. DOI: 10.1007/s10483-011-1426-6.
  • M. G. Reddy, “Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet,” J. Sci. Res., vol. 6, no. 2, pp. 257–272, Apr. 2014. DOI: 10.3329/jsr.v6i2.17233.
  • E. N. Maraj and S. Shaiq, “Instigated magnetic field effect on carbon nanotubes suspensions encompassing variable thermophysical characteristics,” J. Phys. Chem. Solids, vol. 132, pp. 145–156, Sept. 2019. DOI: 10.1016/j.jpcs.2019.04.012.
  • S. Shaiq and E. N. Maraj, “Role of the induced magnetic field on dispersed CNTs in propylene glycol transportation toward a curved surface,” Arab. J. Sci. Eng., vol. 44, no. 9, pp. 7515–7528, Apr. 2019. DOI: 10.1007/s13369-019-03828-4.
  • S. Shaiq et al., “Dissipative induced magnetic field on axisymmetric stagnation point flow of Propylene Glycol (PG) infused with multiple shape Tin (Sn), and Tungsten (W) (nanometer) particles,” Waves Random Complex Media, pp. 1–20, Jul. 2022. DOI: 10.1080/17455030.2022.2092914.
  • S. Akram et al., “Nanomaterials effects on induced magnetic field and double-diffusivity convection on peristaltic transport of Prandtl nanofluids in inclined asymmetric channel,” Nanomater. Nanotechnol., vol. 12, pp. 184798042110486–10, Mar. 2022. DOI: 10.1177/18479804211048630.
  • M. A. Seddeek, “Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow,” Int. J. Heat Mass Transf., vol. 45, no. 4, pp. 931–935, Feb. 2002. DOI: 10.1016/S0017-9310(01)00189-2.
  • H. S. Takhar, A. J. Chamkha, and G. Nath, “Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field,” Int. J. Eng. Sci., vol. 37, no. 13, pp. 1723–1736, Oct. 1999. DOI: 10.1016/S0020-7225(98)00144-X.
  • E. V. Timofeeva, J. L. Routbort, and D. Singh, “Particle shape effects on thermophysical properties of alumina nanofuids,” J. Appl. Phys., vol. 106, no. 1, pp. 014304, May 2009. DOI: 10.1063/1.3155999.
  • T. Hayat et al., “Hydromagnetic mixed convection flow of copper and silver water nanofluids due to a curved stretching sheet,” Res. Phys., vol. 6, pp. 904–910, Nov. 2016. DOI: 10.1016/j.rinp.2016.10.023.
  • R. L. Burden and J. D. Faires, Numerical Analysis. Boston: PWS, 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.