Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
310
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal energy storage characteristics of finned tubes with different gradients of fin heights

, , , ORCID Icon, & ORCID Icon
Pages 845-874 | Received 24 Oct 2022, Accepted 13 Mar 2023, Published online: 07 Apr 2023

References

  • N. M. Eshra and M. G. Salem, “Solar energy application in drainage pumping stations to save water and reducing CO2 emission,” Energy Rep., vol. 6, pp. 354–366, 2020. DOI: 10.1016/j.egyr.2020.08.056.
  • L. Henriquez-Vargas, F. Angel, A. Reyes, N. Pailahueque, and P. Donoso-Garcia, “Simulation of a solar energy accumulator based on phase change materials,” Numer. Heat Tranf. A-Appl., vol. 77, no. 5, pp. 443–459, 2020. DOI: 10.1080/10407782.2020.1713633.
  • S. E. Ghasemi, S. Mohsenian, and A. A. Ranjbar, “Numerical analysis on heat transfer of parabolic solar collector operating with nanofluid using Eulerian two-phase approach,” Numer. Heat Tranf. A-Appl, vol. 80, no. 9, pp. 475–484, 2021. DOI: 10.1080/10407782.2021.1950412.
  • J. N. Yu, Y. M. Tang, K. Y. Chau, R. Nazar, S. Ali, and W. Iqbal, “Role of solar-based renewable energy in mitigating CO2 emissions: evidence from quantile-on-quantile estimation,” Renew. Energy, vol. 182, pp. 216–226, 2022. DOI: 10.1016/j.renene.2021.10.002.
  • C. Magazzino, M. Mele, and N. Schneider, “A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions,” Renew. Energy, vol. 167, pp. 99–115, 2021. DOI: 10.1016/j.renene.2020.11.050.
  • G. Mello, M. F. Dias, and M. Robaina, “Wind farms life cycle assessment review: CO2 emissions and climate change,” Energy Rep., vol. 6, pp. 214–219, 2020. DOI: 10.1016/j.egyr.2020.11.104.
  • K. F. Forbes and E. M. Zampelli, “Wind energy, the price of carbon allowances, and CO2 emissions: evidence from Ireland,” Energy Policy, vol. 133, p. 110871, 2019. DOI: 10.1016/j.enpol.2019.07.007.
  • Y. Li and L. Willman, “Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas – A case study of emissions from an electricity system with tidal power in Southern Alaska,” Appl. Energy, vol. 117, pp. 42–53, 2014. DOI: 10.1016/j.apenergy.2013.09.032.
  • B. F. Chen, et al., “The deployment of the first tidal energy capture system in Taiwan,” Ocean Eng., vol. 155, pp. 261–277, 2018. DOI: 10.1016/j.oceaneng.2018.02.052.
  • G. H. Rau and J. R. Baird, “Negative-CO2-emissions ocean thermal energy conversion,” Renew. Sust. Energy Rev., vol. 95, pp. 265–272, 2018. DOI: 10.1016/j.rser.2018.07.027.
  • A. Rajan and K. S. Reddy, “Convective heat loss prediction from conical cavity receiver of solar parabolic dish collector using numerical method and artificial neural network,” Numer. Heat Tranf. A-Appl., vol. 83, no. 6, pp. 626–649, 2023. DOI: 10.1080/10407782.2022.2102338.
  • R. C. Talawo, B. E. M. Fotso, and M. Fogue, “Numerical study of a solar thermoelectric generator with vortex tube for hybrid vehicle,” Numer. Heat Tranf. A-Appl., vol. 80, no. 1–2, pp. 43–61, 2021. DOI: 10.1080/10407782.2021.1929255.
  • Q. P. Gong, F. C. Kou, X. Y. Sun, Y. Zou, J. H. Mo, and X. Wang, “Towards zero energy buildings: a novel passive solar house integrated with flat gravity-assisted heat pipes,” Appl. Energy, vol. 306, p. 117981, 2022. DOI: 10.1016/j.apenergy.2021.117981.
  • C. L. Tang, W. L. Jin, L. M. Wang, Q. L. Zha, S. R. Jamil, and D. F. Che, “Numerical simulation of a novel regenerative heat exchanger with combined sensible-latent heat storage matrix,” Numer. Heat Tranf. A-Appl., vol. 80, no. 11, pp. 579–596, 2021. DOI: 10.1080/10407782.2021.1959870.
  • S. L. Lu, Q. Y. Lin, Y. Liu, L. Yue, and R. Wang, “Study on thermal performance improvement technology of latent heat thermal energy storage for building heating,” Appl. Energy, vol. 323, p. 119594, 2022. DOI: 10.1016/j.apenergy.2022.119594.
  • T. Yan, R. Z. Wang, T. X. Li, L. W. Wang, and I. T. Fred, “A review of promising candidate reactions for chemical heat storage,” Renew. Sust. Energy Rev., vol. 43, pp. 13–31, 2015. DOI: 10.1016/j.rser.2014.11.015.
  • H. Nemati and M. Habibi, “Analytical and numerical analysis of phase change material solidification in partially filled capsules considering breathing vent,” J. Energy Storage, vol. 40, p. 102725, 2021. DOI: 10.1016/j.est.2021.102725.
  • Z. Du, G. Liu, X. Huang, T. Xiao, X. Yang, and Y. L. He, “Numerical studies on a fin-foam composite structure towards improving melting phase change,” Int. J. Heat Mass Transf., vol. 208, p. 124076, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124076.
  • G. Liu, T. Xiao, J. F. Guo, P. Wei, X. H. Yang, and K. Hooman, “Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: evaluation on gradient in pore structure,” Appl. Therm. Eng., vol. 212, p. 118564, 2022. DOI: 10.1016/j.applthermaleng.2022.118564.
  • A. Yadav, et al., “Recent advances on enhanced thermal conduction in phase change materials using carbon nanomaterials,” J. Energy Storage, vol. 43, p. 103173, 2021. DOI: 10.1016/j.est.2021.103173.
  • A. M. Saeed, et al., “A numerical investigation of a heat transfer augmentation finned pear-shaped thermal energy storage system with nano-enhanced phase change materials,” J. Energy Storage, vol. 53, p. 105172, 2022. DOI: 10.1016/j.est.2022.105172.
  • Z. F. Chen, X. S. Li, J. L. Zhang, L. F. Ouyang, Y. Y. Wang, and Y. Y. Jiang, “Simulation and analysis of heat dissipation performance of power battery based on phase change material enhanced heat transfer variable fin structure,” Numer. Heat Tranf. A-Appl., vol. 80, no. 11, pp. 535–555, 2021. DOI: 10.1080/10407782.2021.1959834.
  • G. Liu, et al., “Design and assessments on a hybrid pin fin-metal foam structure towards enhancing melting heat transfer: an experimental study,” Int. J. Therm. Sci., vol. 182, p. 107809, 2022. DOI: 10.1016/j.ijthermalsci.2022.107809.
  • J. Wołoszyn, K. Szopa, and G. Czerwiński, “Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system,” Appl. Therm. Eng., vol. 196, p. 117332, 2021. DOI: 10.1016/j.applthermaleng.2021.117332.
  • F. Li, et al., “Application and analysis of flip mechanism in the melting process of a triplex-tube latent heat energy storage unit,” Energy Rep., vol. 9, pp. 3989–4004, 2023. DOI: 10.1016/j.egyr.2023.03.037.
  • X. L. Zhu, Y. Li, and Q. Z. Zhu, “Heat transfer enhancement technology for fins in phase change energy storage,” J. Energy Storage, vol. 55, p. 105833, 2022. DOI: 10.1016/j.est.2022.105833.
  • S. Tiari, A. Hockins, and M. Mahdavi, “Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations,” Case Stud. Therm. Eng., vol. 25, p. 100999, 2021. DOI: 10.1016/j.csite.2021.100999.
  • V. Joshi and M. K. Rathod, “Constructal enhancement of thermal transport in latent heat storage systems assisted with fins,” Int. J. Therm. Sci., vol. 145, p. 105984, 2019. DOI: 10.1016/j.ijthermalsci.2019.105984.
  • R. A. Nicholls, M. A. Moghimi, and A. L. Griffiths, “Impact of fin type and orientation on performance of phase change material-based double pipe thermal energy storage,” J. Energy Storage, vol. 50, p. 104671, 2022. DOI: 10.1016/j.est.2022.104671.
  • A. H. N. Al-Mudhafar, A. F. Nowakowski, and F. C. G. A. Nicolleau, “Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins,” Energy Rep., vol. 7, pp. 120–126, 2021. DOI: 10.1016/j.egyr.2021.02.034.
  • C. B. Zhang, J. Li, and Y. P. Chen, “Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins,” Appl. Energy, vol. 259, p. 114102, 2020. DOI: 10.1016/j.apenergy.2019.114102.
  • M. Amini, R. Amini, A. Jafarinia, and M. Kashfi, “Numerical investigation on effects of using segmented and helical tube fins on thermal performance and efficiency of a shell and tube heat exchanger,” Appl. Therm. Eng., vol. 138, pp. 750–760, 2018. DOI: 10.1016/j.applthermaleng.2018.03.004.
  • H. Y. Li, C. Z. Hu, Y. C. He, D. W. Tang, K. M. Wang, and W. G. Huang, “Effect of perforated fins on the heat-transfer performance of vertical shell-and-tube latent heat energy storage unit,” J. Energy Storage, vol. 39, p. 102647, 2021. DOI: 10.1016/j.est.2021.102647.
  • O. K. Yagci, M. Avci, and O. Aydin, “Melting and solidification of PCM in a tube-in-shell unit: effect of fin edge lengths’ ratio,” J. Energy Storage, vol. 24, p. 100802, 2019. DOI: 10.1016/j.est.2019.100802.
  • J. F. Guo, X. Y. Wang, B. Yang, X. H. Yang, and M. J. Li, “Thermal assessment on solid-liquid energy storage tube packed with non-uniform angled fins,” Sol. Energy Mater. Sol. Cells, vol. 236, p. 111526, 2022. DOI: 10.1016/j.solmat.2021.111526.
  • L. Pu, S. Q. Zhang, L. L. Xu, and Y. Z. Li, “Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit,” Appl. Therm. Eng., vol. 166, p. 114753, 2020. DOI: 10.1016/j.applthermaleng.2019.114753.
  • S. X. Deng, C. D. Nie, G. Y. Wei, and W. B. Ye, “Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube,” Energy Build., vol. 183, pp. 161–173, 2019. DOI: 10.1016/j.enbuild.2018.11.018.
  • L. Kalapala and J. K. Devanuri, “Effect of orientation on thermal performance of a latent heat storage system equipped with annular fins - An experimental and numerical investigation,” Appl. Therm. Eng., vol. 183, p. 116244, 2021. DOI: 10.1016/j.applthermaleng.2020.116244.
  • Y. P. Huang, D. C. Cao, D. K. Sun, and X. D. Liu, “Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins,” Int. J. Heat Mass Transf., vol. 182, p. 121920, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.121920.
  • X. H. Yang, J. F. Guo, B. Yang, H. N. Cheng, P. Wei, and Y. L. He, “Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit,” Appl. Energy, vol. 279, p. 115772, 2020. DOI: 10.1016/j.apenergy.2020.115772.
  • J. F. Guo, Z. Liu, Z. Du, J. B. Yu, X. H. Yang, and J. Y. Yan, “Effect of fin-metal foam structure on thermal energy storage: an experimental study,” Renew. Energy, vol. 172, pp. 57–70, 2021. DOI: 10.1016/j.renene.2021.03.018.
  • Y. B. Tao, Y. You, and Y. L. He, “Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material,” Appl. Therm. Eng., vol. 93, pp. 476–485, 2016. DOI: 10.1016/j.applthermaleng.2015.10.016.
  • G. S. Sodhi and P. Muthukumar, “Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution,” Renew. Energy, vol. 171, pp. 299–314, 2021. DOI: 10.1016/j.renene.2021.02.084.
  • C. Yu, X. Zhang, X. Chen, C. B. Zhang, and Y. P. Chen, “Melting performance enhancement of a latent heat storage unit using gradient fins,” Int. J. Heat Mass Transf., vol. 150, p. 119330, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119330.
  • C. Z. Ji, Z. Qin, Z. H. Low, S. Dubey, F. H. Choo, and F. Duan, “Non-uniform heat transfer suppression to enhance PCM melting by angled fins,” Appl. Therm. Eng., vol. 129, pp. 269–279, 2018. DOI: 10.1016/j.applthermaleng.2017.10.030.
  • S. Z. Li, Y. L. Zhang, Z. T. Zhou, W. Z. Shi, J. Z. Zhang, and B. Z. Wang, “Study on improving the storage efficiency of ocean thermal energy storage (OTES) unit by using fins,” Case Stud. Therm. Eng., vol. 37, p. 102262, 2022. DOI: 10.1016/j.csite.2022.102262.
  • W. W. Ye and J. M. Khodadadi, “Effects of arrow-shape fins on the melting performance of a horizontal shell-and-tube latent heat thermal energy storage unit,” J. Energy Storage, vol. 54, p. 105201, 2022. DOI: 10.1016/j.est.2022.105201.
  • A. Shukla, K. Kant, P. H. Biwole, R. Pitchumani, and A. Sharma, “Melting and solidification of a phase change material with constructal tree-shaped fins for thermal energy storage,” J. Energy Storage, vol. 53, p. 105158, 2022. DOI: 10.1016/j.est.2022.105158.
  • M. Fadl and P. C. Eames, “Numerical investigation of the influence of mushy zone parameter A(mush) on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems,” Appl. Therm. Eng., vol. 151, pp. 90–99, 2019. DOI: 10.1016/j.applthermaleng.2019.01.102.
  • R. Srikanth and C. Balaji, “Experimental investigation on the heat transfer performance of a PCM based pin fin heat sink with discrete heating,” Int. J. Therm. Sci., vol. 111, pp. 188–203, 2017. DOI: 10.1016/j.ijthermalsci.2016.08.018.
  • S. K. Saha and P. Dutta, “Heat transfer correlations for PCM-based heat sinks with plate fins,” Appl. Therm. Eng., vol. 30, no. 16, pp. 2485–2491, 2010. DOI: 10.1016/j.applthermaleng.2010.06.021.
  • A. Arshad, M. Jabbal, P. T. Sardari, M. A. Bashir, H. Faraji, and Y. Y. Yan, “Transient simulation of finned heat sinks embedded with PCM for electronics cooling,” Therm. Sci. Eng. Prog., vol. 18, p. 100520, 2020. DOI: 10.1016/j.tsep.2020.100520.
  • A. R. Archibold, M. M. Rahman, D. Y. Goswami, and E. K. Stefanakos, “Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage,” Appl. Therm. Eng., vol. 64, no. 1–2, pp. 396–407, 2014. DOI: 10.1016/j.applthermaleng.2013.12.016.
  • G. S. Sodhi, V. Kumar, and P. Muthukumar, “Design assessment of a horizontal shell and tube latent heat storage system: alternative to fin designs,” J. Energy Storage, vol. 44, p. 103282, 2021. DOI: 10.1016/j.est.2021.103282.
  • C. Ao, S. Y. Yan, L. Zhao, and Y. T. Wu, “Assessment on the effect of longitudinal fins upon melting process in a latent heat thermal energy storage unit,” J. Energy Storage, vol. 59, p. 106408, 2023. DOI: 10.1016/j.est.2022.106408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.