Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
178
Views
1
CrossRef citations to date
0
Altmetric
Articles

RSM-based sensitivity analysis of hybrid nanofluid in an enclosure filled with non-Darcy porous medium by using LBM method

, ORCID Icon, , &
Pages 875-899 | Received 14 Nov 2022, Accepted 09 Mar 2023, Published online: 07 Apr 2023

References

  • S. E. Ahmed, M. A. Mansour, A. M. Rashad, and T. Salah, “MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3133–3149, Mar. 2020. DOI: 10.1007/s10973-019-08675-x.
  • X. B. Feng, Q. Liu, and Y. L. He, “Numerical simulations of convection heat transfer in porous media using a cascaded lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 151, pp. 119410, Apr. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119410.
  • M. Izadi, B. Bastani, and M. A. Sheremet, “ Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach,” Adv. Powder Technol., vol. 31, no. 6, pp. 2493–2504, Jun. 2020. DOI: 10.1016/j.apt.2020.04.011.
  • K. Venkatadri, O. A. Bég, and V. R. Prasad, “Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles,” Eur. Phys. J. Plus, vol. 136, pp. 885, Aug. 2021. DOI: 10.1140/epjp/s13360-021-01881-3.
  • K. Venkatadri, O. A. Bég, and S. Kuharat, “Magneto-convective flow through a porous enclosure with Hall current and thermal radiation effects: Numerical study,” Eur. Phys. J. Spec., vol. 231, pp. 2555–2568, May 2022. DOI: 10.1140/epjs/s11734-022-00592-9.
  • Vedavathi, N. Venkatadri, K. Fazuruddin, S. Raju, and G. S. S., “Natural convection flow in semi-trapezoidal porous enclosure filled with alumina-water nanofluid using Tiwari and Das,” Nanofluid Model. Eng. Trans., vol. 70, no. 4, pp. 303–318, Mar. 2022. DOI: 10.24423/EngTrans.1285.20221004.
  • K. Venkatadri, “Radiative magneto‐thermogravitational flow in a porous square cavity with viscous heating and Hall current effects: A numerical study of ψ–v scheme,” Heat Transf., vol. 51, no. 7, pp. 6705–6723, Nov. 2022. DOI: 10.1002/htj.22619.
  • O. A. Bég et al., “Numerical study of magnetohydrodynamic natural convection in a non-Darcian porous enclosure filled with electrically conducting helium gas,” Proc. Institution Mech. Eng. C: J. Mech. Eng. Sci., vol. 236, no. 5, pp. 2203–2223, Jan. 2022. DOI: 10.1177/09544062211003624.
  • F. H. Ali, H. K. Hamzah, M. Mozaffari, S. A. M. Mehryan, and M. Ghalambaz, “Natural convection of nano encapsulated phase change suspensions inside a local thermal non-equilibrium porous annulus,” J. Therm. Anal. Calorim., vol. 141, no. 5, pp. 1801–1816, Apr. 2020. DOI: 10.1007/s10973-020-09658-z.
  • O. R. Alomar, N. M. Basher, and A. A. Yousif, “Analysis of effects of thermal non-equilibrium and non-Darcy flow on natural convection in a square porous enclosure provided with a heated L shape plate,” Int. J. Mech. Sci., vol. 181, pp. 105704, Sept. 2020. DOI: 10.1016/j.ijmecsci.2020.105704.
  • A. I. Alsabery, T. Tayebi, A. J. Chamkha, and I. Hashim, “Natural convection of Al2O3-water nanofluid in a non-Darcian wavy porous cavity under the local thermal non-equilibrium condition,” Sci. Rep., vol. 10, pp. 10848, Oct. 2020. DOI: 10.1038/s41598-020-75095-5.
  • H. Ozoe and K. Okada, “The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure,” Int. J. Heat Mass Transf., vol. 32, no. 10, pp. 1939–1954, Oct. 1989. DOI: 10.1016/0017-9310(89)90163-4.
  • N. Biswas et al., “Magneto-hydrodynamic thermal convection of Cu–Al2O3/water hybrid nanofluid saturated with porous media subjected to half-sinusoidal nonuniform heating,” J. Therm. Anal. Calorim., vol. 143, no. 5, pp. 1727–1753, Jan. 2021. DOI: 10.1007/s10973-020-10123-0.
  • N. Biswas, N. K. Manna, and A. J. Chamkha, “Effects of half-sinusoidal nonuniform heating during MHD thermal convection in Cu–Al2O3/water hybrid nanofluid saturated with porous media,” J. Therm. Anal. Calorim., vol. 143, pp. 1665–1688, Jan. 2021. DOI: 10.1007/s10973-020-10109-y.
  • L. M. Al-Balushi and M. M. Rahman, “Convective heat transfer utilizing magnetic nanoparticles in the presence of a sloping magnetic field inside a square enclosure,” J. Therm. Sci. Eng. Appl., vol. 11, no. 4, pp. 041013, Aug. 2019. DOI: 10.1115/1.4044120.
  • S. A. M. Mehryan et al., “Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field,” J. Mol. Liq., vol. 263, pp. 510–525, Aug. 2018. DOI: 10.1016/j.molliq.2018.04.119.
  • M. Sheikholeslami and S. A. Shehzad, “Numerical analysis of Fe3O4 –H2O nanofluid flow in permeable media under the effect of external magnetic source,” Int. J. Heat Mass Transf., vol. 118, pp. 182–192, Mar. 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.113.
  • M. Sheikholeslami and S. A. Shehzad, “CVFEM for influence of external magnetic source on Fe3O4 – H2O nanofluid behavior in a permeable cavity considering shape effect,” Int. J. Heat Mass Transf., vol. 115, pp. 180–191, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.045.
  • A. Mourad et al., “Galerkin finite element analysis of thermal aspects of Fe3O4-MWCNT/water hybrid nanofluid filled in wavy enclosure with uniform magnetic field effect,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105461, Jul. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105461.
  • A. S. Dogonchi, T. Tayebi, N. Karimi, A. J. Chamkha, and H. Alhumade, “Thermal-natural convection and entropy production behavior of hybrid nanoliquid flow under the effects of magnetic field through a porous wavy cavity embodies three circular cylinders,” J. Taiwan Inst. Chem. Eng., vol. 124, pp. 162–173, Jul. 2021. DOI: 10.1016/j.jtice.2021.04.033.
  • M. Muneeshwaran, G. Srinivasan, P. Muthukumar, and C. C. Wang, “Role of hybrid-nanofluid in heat transfer enhancement – A review,” Int. Commun. Heat Mass Transf., vol. 125, pp. 105341, Jun. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105341.
  • A. Rahimi et al., “Entropy generation analysis and heatline visualization of free convection in nanofluid (KKL model-based)-filled cavity including internal active fins using lattice Boltzmann method,” Comput. Math. Appl., vol. 75, no. 5, pp. 1814–1830, Mar. 2018. DOI: 10.1016/j.camwa.2017.12.008.
  • N. H. Khan, M. K. Paswan, and M. A. Hassan, “Natural convection of hybrid nanofluid heat transport and entropy generation in cavity by using Lattice Boltzmann Method,” J. Indian Chem. Soc., vol. 99, no. 3, pp. 100344, Mar. 2022. DOI: 10.1016/j.jics.2022.100344.
  • H. Sajjadi, A. A. Delouei, R. Mohebbi, M. Izadi, and S. Succi, “Natural convection heat transfer in a porous cavity with sinusoidal temperature distribution using Cu/Water nanofluid: Double MRT Lattice Boltzmann method,” Commun. Comput. Phys., vol. 29, no. 1, pp. 292–318, Jan. 2021. DOI: 10.4208/cicp.OA-2020-0001.
  • M. R. Safaei, A. Karimipour, A. Abdollahi, and T. K. Nguyen, “The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method,” Phys. A Stat. Mech. Appl., vol. 509, no. 1, pp. 515–535, Nov. 2018. DOI: 10.1016/j.physa.2018.06.034.
  • M. Ghalambaz, M. A. Sheremet, S. Mehryan, F. M. Kashkooli, and I. Pop, “Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid,” J. Therm. Anal. Calorim., vol. 135+, pp. 1381–1398, Jun. 2019. DOI: 10.1007/s10973-018-7472-8.
  • S. Mehryan, M. Ghalambaz, A. J. Chamkha, and M. Izadi, “Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model,” Powder Technol., vol. 367, no. 1, pp. 443–455, May 2020. DOI: 10.1016/j.powtec.2020.04.005.
  • F. Selimefendigil and H. F. Öztop, “Thermal management and performance improvement by using coupled effects of magnetic field and phase change material for hybrid nanoliquid convection through a 3D vented cylindrical cavity,” Int. J. Heat Mass Transf., vol. 183, no. Part C, pp. 122233, Feb. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122233.
  • S. Kumar, K. M. Gangawane, and H. F. Oztop, “Applications of lattice Boltzmann method for double-diffusive convection in the cavity: A review,” J. Therm. Anal. Calorim., vol. 147, pp. 10889–10921, May 2022. DOI: 10.1007/s10973-022-11354-z.
  • B. Alshuraiaan, M. Izadi, and M. A. Sheremet, “Numerical study on charging performance of multi-enclosed thermal storage: Multiple versus integrated thermal storage,” Case Stud. Therm. Eng., vol. 33, pp. 101954, May 2022. DOI: 10.1016/j.csite.2022.101954.
  • B. Alshuraiaan, A. B. Shahrestani, and M. Izadi, “Numerical study on passive parameters of a fluid-solid interaction problem derived by natural convection in a circular enclosure,” Alex. Eng. J., vol. 63, no. 15, pp. 415–426, Jan. 2023. DOI: 10.1016/j.aej.2022.07.057.
  • M. Fadaei, “Conjugated non- Newtonian phase change process in a shell and tube heat exchanger: A parametric-geometric analysis,” Appl. Therm. Eng., vol. 220, no. 5, pp. 119795, Feb. 2023. DOI: 10.1016/j.applthermaleng.2022.119795.
  • D. Huu-Quan, “3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe,” Appl. Therm. Eng., vol. 182, no. 5, pp. 116106, Jan. 2021. DOI: 10.1016/j.applthermaleng.2020.116106.
  • M. Izadi, “Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber,” Chin. J. Chem. Eng., vol. 28, no. 5, pp. 1203–1213, May 2020. DOI: 10.1016/j.cjche.2020.01.021.
  • M. Izadi, A. Hajjar, H. M. Alshehri, and A. Saleem, “Analysis of applying fin for charging process of phase change material inside H-shaped thermal storage,” Int. Commun. Heat Mass Transf., vol. 139, pp. 106421, Dec. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106421.
  • M. Izadi, H. Hajjar, M. Alshehri, and M. Sheremet, “Charging process of a partially heated trapezoidal thermal energy storage filled by nano-enhanced PCM using controlable uniform magnetic field,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106349, Nov. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106349.
  • M. Izadi and H. Fagehi, “Influence of finned charges on melting process performance in a thermal energy storage,” Therm. Sci. Eng. Prog., vol. 37, no. 1, pp. 101547, Jan. 2023. DOI: 10.1016/j.tsep.2022.101547.
  • S. A. Shehzad, “Influence of fin orientation on the natural convection of aqueous-based nano-encapsulated PCMs in a heat exchanger equipped with wing-like fins,” Chem. Eng. Process. Process Intensif., vol. 160, pp. 108287, Mar. 2021. DOI: 10.1016/j.cep.2020.108287.
  • Q. Xiong, “State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles,” J. Clean. Prod., vol. 310, no. 10, pp. 127528, Aug. 2021. DOI: 10.1016/j.jclepro.2021.127528.
  • Y. M. Chu, “Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modelling,” J. Mol. Liq., vol. 333, no. 1, pp. 115969, Jul. 2021. DOI: 10.1016/j.molliq.2021.115969.
  • Y. M. Chu, S. Bilal, and M. R. Hajizadeh, “Hybrid ferrofluid along with MWCNT for augmentation of thermal behavior of fluid during natural convection in a cavity,” Math. Methods Appl. Sci., Nov. 2020. DOI: 10.1002/mma.6937.
  • M. Ibrahim, T. Saeed, E. A. Algehyne, and H. Alsulami, “Optimization and effect of wall conduction on natural convection in a cavity with constant temperature heat source: Using lattice Boltzmann method and neural network algorithm,” J. Therm. Anal. Calorim., vol. 144, pp. 2449–2463, Mar. 2021. DOI: 10.1007/s10973-021-10654-0.
  • M. Ibrahim, T. Saeed, and A. M. Alshehri, “The numerical simulation and sensitivity analysis of a non-Newtonian fluid flow inside a square chamber exposed to a magnetic field using the FDLBM approach,” J. Therm. Anal. Calorim., vol. 144, pp. 2403–2421, Mar. 2021. DOI: 10.1007/s10973-021-10695-5.
  • A. Abbas, “Computational study of the coupled mechanism of thermophoretic transportation and mixed convection flow around the surface of a sphere,” Molecules, vol. 25, no. 11, pp. 2694, Jun. 2020. DOI: 10.3390/molecules25112694.
  • M. D. Shamshuddin, S. O. Salawu, O. A. Bég, A. Kadir, and T. A. Bég, “Computation of reactive mixed convection radiative viscoelastic nanofluid thermo-solutal transport from a stretching sheet with Joule heating,” Int. J. Modell. Simul., vol. 42, no. 6, pp. 1005–1029, Dec. 2022. DOI: 10.1080/02286203.2021.2012635.
  • Z. Ullah, “Computational analysis of the oscillatory mixed convection flow along a horizontal circular cylinder in thermally stratified medium,” Comput. Mater. Continua, vol. 65, no. 1, pp. 109–123, Jun. 2020. DOI: 10.32604/cmc.2020.011468.
  • K. Venkatadri and O. A. Bég, “Lattice Boltzmann simulation of thermomagnetic natural convection in an enclosure partially filled with a porous medium,” Waves Random Complex Media, Dec. 2022. DOI: 10.1080/17455030.2022.2157516.
  • I. V. Miroshnichenko, M. A. Sheremet, H. F. Oztop, and N. Abu-Hamdeh, “Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element,” Int. J. Heat Mass Transf., vol. 126, no. part B, pp. 184–191, Nov. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.146.
  • S. Ahmad Khan, M. I. Khan, T. Hayat, M. Faisal Javed, and A. Alsaedi, “Mixed convective non-linear radiative flow with TiO2-Cu-water hybrid nanomaterials and induced magnetic field,” Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 8, pp. 2754–2774, Sept. 2019. DOI: 10.1108/HFF-12-2018-0748.
  • T. A. Yusuf, F. Mabood, W. A. Khan, and J. A. Gbadeyan, “Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model,” Alex. Eng. J., vol. 59, no. 6, pp. 5247–5261, Dec. 2020. DOI: 10.1016/j.aej.2020.09.053.
  • R. Nath and K. Murugesan, “Double diffusive mixed convection in a Cu-Al2O3/water nanofluid filled backward facing step channel with inclined magnetic field and part heating load conditions,” J. Energy Storage, vol. 47, pp. 103664, Mar. 2022. DOI: 10.1016/j.est.2021.103664.
  • S. A. M. Mehryan, F. M. Kashkooli, M. Ghalambaz, and A. J. Chamkha, “Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity,” Adv. Powder Technol., vol. 28, no. 9, pp. 2295–2305, Sept. 2017. DOI: 10.1016/j.apt.2017.06.011.
  • Z. Abdelmalek et al., “Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis,” Alex. Eng. J., vol. 59, no. 5, pp. 3991–4011, Oct. 2020. DOI: 10.1016/j.aej.2020.07.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.