Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
224
Views
16
CrossRef citations to date
0
Altmetric
Articles

Bioconvective flow of a variable properties hybrid nanofluid over a spinning disk with Arrhenius activation energy, Soret and Dufour impacts

ORCID Icon, ORCID Icon & ORCID Icon
Pages 900-922 | Received 09 Feb 2023, Accepted 10 Mar 2023, Published online: 30 Mar 2023

References

  • S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne, IL, USA: Argonne National Lab.(ANL), 1995.
  • E.-K. Lim, E. Jang, K. Lee, S. Haam and Y.-M. Huh, “Delivery of cancer therapeutics using nanotechnology,” Pharmaceutics, vol. 5, no. 4, pp. 294–317, 2013. DOI: 10.3390/pharmaceutics5020294.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 231, pp. 99–105, 1995.
  • N. Asokan, P. Gunnasegaran and V. V. Wanatasanappan, ““Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles” Therm. Sci. Eng. Prog., vol. 20, pp. 100727, 2020. DOI: 10.1016/j.tsep.2020.100727.
  • Y. Jiang, X. Zhou and Y. Wang, “Effect of nanoparticle shapes on nanofluid mixed forced and thermocapillary convection in minichannel,” Int. Commun. Heat Mass Transf, vol. 118, pp. 104884, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104884.
  • H. Saadati, K. Hadad and A. Rabiee, “Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid,” Nucl. Eng. Technol, vol. 50, no. 5, pp. 639–e647, 2018. DOI: 10.1016/j.net.2018.01.015.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J. Heat Transf, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • S. E. Ahmed, A. A. M. Arafa and S. A. Hussein, “A novel model of non-linear radiative williamson nanofluid flow along a vertical wavy cone in the presence of gyrotactic microorganisms,” Int. J. Modelling Simulation, 2023. DOI: 10.1080/02286203.2023.2180023.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “Arrhenius activated energy impacts on irreversibility optimization due to unsteady stagnation point flow of radiative Casson nanofluids,” Eur. Phys. J. Plus, vol. 137, no. 11, pp. 1–14, 2022. DOI: 10.1140/epjp/s13360-022-03434-8.
  • N. Biswas, D. K. Mandal, N. K. Manna and A. C. Benim, “Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: Cleaner energy application,” Energy, vol. 263, pp. 125775, 2023. DOI: 10.1016/j.energy.2022.125775.
  • S. A. Hussein, S. E. Ahmed and A. A. Arafa, “Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties,” ZAMM‐J. Appl. Mathe. Mech./Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 103, no. 1, pp. e202200284, 2022. DOI: 10.1002/zamm.202200284.
  • K. Muhammad, T. Hayat and A. Alsaedi, “Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface,” Int. Commun. Heat Mass Transf, vol. 121, pp. 104805, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104805.
  • N. Biswas, D. K. Mandal, N. K. Manna and A. C. Benim, “Magneto-hydrothermal triple-convection in a w-shaped porous cavity containing oxytactic bacteria,” Sci Rep, vol. 12, no. 1, pp. 18053, 2022. DOI: 10.1038/s41598-022-18401-7.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “MHD Ellis nanofluids flow around rotating cone in the presence of motile oxytactic microorganisms,” Int. Commun. Heat Mass Transf, vol. 134, pp. 106056, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106056.
  • S. A. Hussein and N. T. Eldabe, “Peristaltic pumping of boron nitride-ethylene glycol nanofluid through a complex wavy micro-channel under the effect of induced magnetic field and double diffusive,” Sci Rep, vol. 13, no. 1, pp. 2622, 2023. DOI: 10.1038/s41598-023-29301-9.
  • D. K. Mandal, N. Biswas, N. K. Manna, R. S. R. Gorla and A. J. Chamkha, “Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields,” Int. J. Mech. Sci., vol. 211, pp. 106778, 2021. DOI: 10.1016/j.ijmecsci.2021.106778.
  • S. E. Ahmed, A. A. Arafa, S. A. Hussein and Z. A. S. Raizah, “Novel treatments for the bioconvective radiative Ellis nanofluids wedge flow with viscous dissipation and an activation energy,” Case Stud. Therm. Eng, vol. 40, pp. 102510, 2022. DOI: 10.1016/j.csite.2022.102510.
  • N. Biswas, N. K. Manna, D. K. Mandal and R. S. R. Gorla, “Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with cu–water nanofluid,” HFF, vol. 31, no. 11, pp. 3461–3489, 2021. DOI: 10.1108/HFF-08-2020-0538.
  • A. A. M. Arafa, Z. Z. Rashed and S. E. Ahmed, “Radiative flow of non-Newtonian nanofluids within inclined porous enclosures with time fractional derivative,” Sci. Rep., vol. 11, no. 1, pp. 5338, 2021. DOI: 10.1038/s41598-021-84848-9.
  • N. Biswas, A. Datta, N. K. Manna, D. K. Mandal and R. S. R. Gorla, “Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field,” HFF, vol. 31, no. 5, pp. 1638–1661, 2021. DOI: 10.1108/HFF-07-2020-0410.
  • S. E. Ahmed, A. A. Arafa and S. A. Hussein, “Dissipated-radiative compressible flow of nanofluids over unsmoothed inclined surfaces with variable properties,” Numerical Heat Transfer, Part A: Appl., 2022. DOI: 10.1080/10407782.2022.2141389.
  • A. A. M. Arafa, S. E. Ahmed and M. M. Allan, “Peristaltic flow of non-homogeneous nanofluids through variable porosity and heat generating porous media with viscous dissipation: Entropy analyses,” Case Stud. Therm. Eng, vol. 32, pp. 101882, 2022. DOI: 10.1016/j.csite.2022.101882.
  • S. Ahmed and A. Mahdy, “Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media,” Appl. Math. Mech.-Engl. Ed, vol. 37, no. 4, pp. 471–484, 2016. DOI: 10.1007/s10483-016-2044-9.
  • A. A. M. Arafa, Z. Z. Rashed and S. E. Ahmed, “Radiative MHD bioconvective nanofluid flow due to gyrotactic microorganisms using Atangana-Baleanu Caputo fractional derivative,” Phys. Scr, vol. 96, no. 5, pp. 055211, 2021. DOI: 10.1088/1402-4896/abe82d.
  • M. I. Asjad, M. Usman, M. M. Kaleem and A. Akgül, “Numerical solutions of fractional oldroyd-b hybrid nanofluid through a porous medium for a vertical surface,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2128233.
  • Z. A. Qureshi, et al., “Mathematical analysis about influence of lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTS,” Alexandria Engin. J., vol. 61, no. 12, pp. 12925–12941, 2022. DOI: 10.1016/j.aej.2022.07.010.
  • A. Shahzad, et al., “Brownian motion and thermophoretic diffusion impact on darcy-forchheimer flow of bioconvective micropolar nanofluid between double disks with cattaneo-christov heat flux,” Alexandria Engin. J., vol. 62, pp. 1–15, 2023. DOI: 10.1016/j.aej.2022.07.023.
  • R. Safdar, M. Jawad, S. Hussain, M. Imran, A. Akgül and W. Jamshed, “Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno’s model,” Chinese J. Phys., vol. 77, pp. 1465–1478, 2022. DOI: 10.1016/j.cjph.2021.11.022.
  • N. Anjum, W. Khan, A. Hobiny, M. Azam, M. Waqas and M. Irfan, “Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic,” Case Stud. Therm. Eng., vol. 39, pp. 102427, 2022. DOI: 10.1016/j.csite.2022.102427.
  • M. Tabrez and W. A. Khan, “Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2135794.
  • M. Waqas, W. Khan, A. A. Pasha, N. Islam and M. M. Rahman, “Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications,” Thermal Sci. Engineering Progress, vol. 36, pp. 101492, 2022. DOI: 10.1016/j.tsep.2022.101492.
  • Z. Hussain and W. A. Khan, “Impact of thermal-solutal stratifications and activation energy aspects on time-dependent polymer nanoliquid,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2128229.
  • R. P. Sharma, S. Mishra, S. Tinker and B. Kulshrestha, “Radiative heat transfer of hybrid nanofluid flow over an expanding surface with the interaction of Joule effect,” J. Nanofluids, vol. 11, no. 5, pp. 745–753, 2022. DOI: 10.1166/jon.2022.1872.
  • R. P. Sharma, S. Mishra, S. Tinker and B. Kulshrestha, “Effect of non-linear thermal radiation and binary chemical reaction on the Williamson nanofluid flow past a linearly stretching sheet,” Int. J. Appl. Comput. Math., vol. 8, no. 4, pp. 1–13, 2022. DOI: 10.1007/s40819-022-01362-w.
  • R. P. Sharma, D. Gorai and K. Das, “Comparative study on hybrid nanofluid flow of Ag–CuO/H2O over a curved stretching surface with Soret and Dufour effects,” Heat Trans., vol. 51, no. 7, pp. 6365–6383, 2022. DOI: 10.1002/htj.22595.
  • R. Sharma and S. Mishra, “Metal and metallic oxide nanofluid over a shrinking surface with thermal radiation and heat generation/absorption,” J. Appl. Computational Mech., vol. 8, no. 2, pp. 557–65, 2022.
  • T. V. Karman, “Uber laminare und turbulente reibung,” Z. angew. Math. Mech, vol. 1, no. 4, pp. 233–252, 1921. DOI: 10.1002/zamm.19210010401.
  • W. G. Cochran, “The flow due to a rotating disc,” Math. Proc. Camb. Phil. Soc, vol. 30, no. 3, pp. 365–375, 1934. DOI: 10.1017/S0305004100012561.
  • H. Attia, “Rotating disk flow and heat transfer through a porous medium of a non- Newtonian fluid with suction and injection,” Commun. Nonlinear Sci. Numer. Simul., vol. 13, no. 8, pp. 1571–1580, 2008. DOI: 10.1016/j.cnsns.2006.05.009.
  • M. M. Rashidi, S. Abelman and N. Freidooni Mehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid,” Int. J. Heat Mass Transf, vol. 62, pp. 515–525, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.004.
  • B. Mahanthesh, S. Amala, B. J. Gireesha and I. L. Animasaun, “Effectiveness of exponential heat source, nanoparticle shape factor and hall current on mixed convective flow of nanoliquids subject to rotating frame”, 2nd,” MMMS, vol. 15, no. 4, pp. 758–778, 2019. DOI: 10.1108/MMMS-08-2018-0146.
  • M. I. Khan, F. Alzahrani and A. Hobiny, “Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy–Forchheimer porous medium,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 7335–7340, 2020. DOI: 10.1016/j.jmrt.2020.04.079.
  • K. Sharma, N. Vijay, S. Kumar and O. D. Makinde, “Hydromagnetic boundary layer flow with heat transfer past a rotating disc embedded in a porous medium,” Heat Transfer, vol. 50, no. 5, pp. 4342–4353, 2021. DOI: 10.1002/htj.22078.
  • S. A. Shehzad, F. Mabood, A. Rauf, M. Izadi and F. M. Abbasi, “Rheological features of non-Newtonian nanofluids flows induced by stretchable rotating disk,” Phys. Scr, vol. 96, no. 3, pp. 035210, 2021. DOI: 10.1088/1402-4896/abd652.
  • F. Mabood, A. Rauf, B. C. Prasannakumara, M. Izadi and S. A. Shehzad, “Impacts of Stefan blowing and mass convention on flow of Maxwell nanofluid of variable thermal conductivity about a rotating disk,” Chin. J. Phys, vol. 71, pp. 260–272, 2021. DOI: 10.1016/j.cjph.2021.03.003.
  • K. Sharma, “Rheological effects on boundary layer flow of ferrofluid with forced convective heat transfer over an infinite rotating disk,” Pramana - J Phys, vol. 95, no. 3, pp. 113, 2021. DOI: 10.1007/s12043-021-02136-7.
  • K. Sharma, N. Vijay, O. D. Makinde, S. B. Bhardwaj, R. M. Singh and F. Mabood, “Boundary layer flow with forced convective heat transfer and viscous dissipation past a porous rotating disk,” Chaos, Solitons Fractals, vol. 148, pp. 111055, 2021. DOI: 10.1016/j.chaos.2021.111055.
  • K. Sharma, S. Kumar and N. Vijay, “Numerical simulation of MHD heat and mass transfer past a moving rotating disk with viscous dissipation and Ohmic heating,” MMMS, vol. 18, no. 1, pp. 153–165, 2022. DOI: 10.1108/MMMS-09-2021-0159.
  • L. T. Watson and C.-Y. Wang, “Deceleration of a rotating disk in a viscous fluid,” Phys. Fluids, vol. 22, no. 12, pp. 2267–2269, 1979. DOI: 10.1063/1.862535.
  • T. Rafiq and M. Mustafa, “Computational analysis of unsteady swirling flow around a decelerating rotating porous disk in nanofluid,” Arab. J. Sci. Eng., vol. 45, no. 2, pp. 1143–1154, 2020. DOI: 10.1007/s13369-019-04257-z.
  • T. Rafiq, M. Mustafa and M. A. Farooq, “Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104673, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104673.
  • M. Moorthy and K. Senthilvadivu, “Soret and Dufour effects on natural convection flow past a vertical surface in a porous medium with variable viscosity,” J. Appl. Mathe., vol. 2012, pp. 1–15, 2012.
  • N. Gajjela, A. Matta and K. Kaladhar, “The effects of Soret and Dufour, chemical reaction, hall and ion currents on magnetized micropolar flow through co-rotating cylinders,” AIP Adv., vol. 7, no. 11, pp. 115201, 2017. DOI: 10.1063/1.4991442.
  • A. Hafeez, M. Khan and J. Ahmed, “Oldroyd-B fluid flow over a rotating disk subject to Soret– Dufour effects and thermophoresis particle deposition,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 13, pp. 2408–2415, 2021. DOI: 10.1177/0954406220946075.
  • S. S. K. Raju, M. J. Babu and C. Raju, “Irreversibility analysis in hybrid nanofluid flow between two rotating disks with activation energy and cross-diffusion effects,” Chin. J. Phys., vol. 72, pp. 499–529, 2021. DOI: 10.1016/j.cjph.2021.03.016.
  • A. V. Kuznetsov, “Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: Oscillatory instability,” Nanoscale Res. Lett., vol. 6, no. 100, pp. 1–13, 2011. DOI: http://www.nanoscalereslett.com/content/6/1/100.
  • A. V. Kuznetsov, “Bio-thermal convection induced by two different species of microorganisms,” Int. Commun. Heat Mass Transf., vol. 38, no. 5, pp. 548–553, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.02.006.
  • K. Sharma, N. Vijay, F. Mabood and I. Badruddin, “Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105977, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105977.
  • N. Vijay and K. Sharma, “Magnetohydrodynamic hybrid nanofluid flow over a decelerating rotating disk with Soret and Dufour effects,” MMMS, vol. 19, no. 2, pp. 253–276, 2023. DOI: 10.1108/MMMS-08-2022-0160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.