Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
235
Views
4
CrossRef citations to date
0
Altmetric
Articles

Mixed convective MHD flow of Williamson fluid over a nonlinear stretching curved surface with variable thermal conductivity and activation energy

, , , &
Pages 942-957 | Received 02 Dec 2022, Accepted 15 Mar 2023, Published online: 06 Apr 2023

References

  • M. Bilal, S. Z. Mazhar, M. Ramzan, and Y. Mehmood, “Time-dependent hydromagnetic stagnation point flow of a Maxwell nanofluid with melting heat effect and amended Fourier and Fick’s laws,” Heat Transf., vol. 50, no. 5, pp. 4417–4434, Jul. 2021. DOI: 10.1002/htj.22081.
  • Y. M. Chu et al., “Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: Dual simulations through Runge-Kutta Fehlberg technique,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104858, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.1048583.
  • F. Haq, S. Kadry, Y. M. Chu, M. Khan, and M. Ijaz Khan, “Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10468–10477, Sept. 2020. DOI: 10.1016/j.jmrt.2020.07.025.
  • M. Ramamoorthy and P. Lakshminarayana, “Radiation and Hall effects on a 3D flow of MHD Williamson fluid over a stretchable surface,” Heat Transf., vol. 49, no. 8, pp. 4410–4426, Dec. 2020. DOI: 10.1002/htj.21833.
  • K. A. Kumar, J. V. R. Reddy, V. Sugunamma, and N. Sandeep, “Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink,” Heat Transf. Res., vol. 50, no. 6, pp. 581–603, 2019. DOI: 10.1615/HeatTransRes.2018025939.
  • S. Nadeem and S. T. Hussain, “Flow and heat transfer analysis of Williamson nanofluid,” Appl. Nanosci., vol. 4, no. 8, pp. 1005–1012, Nov. 2014. DOI: 10.1007/s13204-013-0282-1.
  • K. Ahmed and T. Akbar, “Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface,” Adv. Mech. Eng., vol. 13, no. 5, pp. 1–12, May 2021. DOI: 10.1177/16878140211019875.
  • M. Amjad et al., “Numerical solution of magnetized Williamson nanofluid flow over an exponentially stretching permeable surface with temperature dependent viscosity and thermal conductivity,” Nanomaterials, vol. 12, no. 20, pp. 3661, Oct. 2022. DOI: 10.3390/nano12203661.
  • K. Ahmed et al., “Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface,” Res. Phys., vol. 7, no. 5, pp. 1–18, Jul. 2020. DOI: 10.1177/16878140211019875.
  • T. Akbar, K. Ahmed, T. Muhammad, and S. Munir, “Physical characteristics of Dufour and Soret effects on MHD mixed convection flow of Williamson fluid past a nonlinear stretching porous curved surface,” Waves in Random and Complex Media, pp. 1–18, Jan. 2022. DOI: 10.1080/17455030.2021.2023233.
  • M. Bilal et al., “Williamson magneto nanofluid flow over partially slip and convective cylinder with thermal radiation and variable conductivity,” Sci. Rep., vol. 12, no. 1, pp. 12727, Jul. 2022.
  • S. A. Khan et al., “Study on the novel suppression of heat transfer deterioration of supercritical water flowing in vertical tube through the suspension of alumina nanoparticles,” Int. Commun. Heat Mass Transf., vol. 132, pp. 105893, Mar. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105893.
  • T. H. Zhao, M. I. Khan, and Y. M. Chu, “Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks,” Math. Methods Appl. Sci., pp. 1–19, Apr. 2021. DOI: 10.1002/mma.7310.
  • M. Z. A. Qureshi et al., “Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material,” MATH, vol. 8, no. 1, pp. 633–656, 2023. DOI: 10.3934/math.2023030.
  • A. Ishak, “MHD boundary layer flow due to an exponentially stretching sheet with radiation effect,” Sains Malaysiana, vol. 40, no. 4, pp. 391–395, Apr. 2011.
  • T. Hayat, Z. Abbas, and M. Sajid, “MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface,” Chaos Solit. Fractals, vol. 39, no. 2, pp. 840–848, Jan. 2009. DOI: 10.1016/j.chaos.2007.01.067.
  • S. Mukhopadhyay, G. C. Layek, and S. A. Samad, “Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity,” Int. J. Heat Mass Transf., vol. 48, no. 2122, pp. 4460–4466, Oct. 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.05.027.
  • M. Bibi, A. Zeeshan, and M. Y. Malik, “Numerical analysis of unsteady flow of three-dimensional Williamson fluid-particle suspension with MHD and nonlinear thermal radiations,” Eur. Phys. J. Plus, vol. 135, no. 10, Oct. 2020. DOI: 10.1140/epjp/s13360-020-00857-z.
  • O. D. Makinde and P. Sibanda, “Magnetohydrodynamic mixed-convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction,” J. Heat Transf., vol. 130, no. 11, pp. 1–8, Nov. 2008. DOI: 10.1115/1.2955471.
  • B. Ali, S. A. Khan, A. K. Hussein, T. Thumma, and S. Hussain, “Hybrid nanofluids: Significance of gravity modulation, heat source/sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation,” Appl. Math. Comput., vol. 419, pp. 126878, Apr. 2022. DOI: 10.1016/j.amc.2021.126878.
  • B. Ali et al., “Tangent hyperbolic nanofluid: Significance of Lorentz and buoyancy forces on dynamics of bioconvection flow of rotating sphere via finite element simulation,” Chin. J. Phys., vol. 77, pp. 658–671, Jun. 2022. DOI: 10.1016/j.cjph.2022.03.018.
  • T. Zhao et al., “Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid,” Appl. Math. Mech.-Engl. Ed., vol. 42, no. 8, pp. 1205–1218, Aug. 2021. DOI: 10.1007/s10483-021-2759-5.
  • B. C. Sakiadis, “Boundary‐layer behavior on continuous solid surfaces: I. Boundary‐layer equations for two‐dimensional and axisymmetric flow,” AIChE J., vol. 7, no. 1, pp. 26–28, Mar. 1961. DOI: 10.1002/aic.690070108.
  • R. S. Saif, T. Muhammad, H. Sadia, and R. Ellahi, “Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface,” Phys. A Stat. Mech. Appl., vol. 551, pp. 124060, Aug. 2020. DOI: 10.1016/j.physa.2019.124060.
  • M. R. Khan, K. Pan, A. U. Khan, and N. Ullah, “Comparative study on heat transfer in CNTs-water nanofluid over a curved surface,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104707, Jul. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104707.
  • S. A. Khan, T. Hayat, and A. Alsaedi, “Entropy optimization in passive and active flow of liquid hydrogen based nanoliquid transport by a curved stretching sheet,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104890, Dec. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104890.
  • A. M. Al-Hanaya, F. Sajid, N. Abbas, and S. Nadeem, “Effect of SWCNT and MWCNT on the flow of micropolar hybrid nanofluid over a curved stretching surface with induced magnetic field,” Sci. Rep., vol. 10, no. 1, pp. 1–18, May 2020. DOI: 10.1038/s41598-020-65278-5.
  • M. I. Khan, S. A. Khan, T. Hayat, S. Qayyum, and A. Alsaedi, “Entropy generation analysis in MHD flow of viscous fluid by a curved stretching surface with cubic autocatalysis chemical reaction,” Eur. Phys. J. Plus, vol. 135, no. 2, Feb. 2020. DOI: 10.1140/epjp/s13360-019-00030-1.
  • Z. Abbas, M. Naveed, and M. Sajid, “Heat transfer analysis for stretching flow over a curved surface with magnetic field,” J. Eng. Thermophys., vol. 22, no. 4, pp. 337–345, Oct. 2013. DOI: 10.1134/S1810232813040061.
  • K. A. Kumar, V. Sugunamma, N. Sandeep, and S. Sivaiah, “Physical aspects on MHD micropolar fluid flow past an exponentially stretching curved surface,” DDF, vol. 401, pp. 79–91, 2020. DOI: 10.4028/www.scientific.net/DDF.401.79.
  • T. Hayat, A. Aziz, T. Muhammad, and A. Alsaedi, “Numerical study for nanofluid flow due to a nonlinear curved stretching surface with convective heat and mass conditions,” Res. Phys., vol. 7, pp. 3100–3106, Jan. 2017. DOI: 10.1016/j.rinp.2017.08.030.
  • J. K. Madhukesh et al., “Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach,” J. Mol. Liq., vol. 335, pp. 116103, Aug. 2021. DOI: 10.1016/j.molliq.2021.116103.
  • K. Ahmed, T. Akbar, T. Muhammad, and M. Alghamdi, “Heat transfer characteristics of MHD flow of Williamson nanofluid over an exponential permeable stretching curved surface with variable thermal conductivity,” Case Stud. Therm. Eng., vol. 28, pp. 101544, Dec. 2021. DOI: 10.1016/j.csite.2021.101544.
  • L. Briottet, J. J. Jonas, and F. Montheillet, “A mechanical interpretation of the activation energy of high temperature deformation in two phase materials,” Acta Mater., vol. 44, no. 4, pp. 1665–1672, Apr. 1996. DOI: 10.1016/1359-6454(95)00257-X.
  • T. Salahuddin, N. Siddique, M. Arshad, and I. Tlili, “Internal energy change and activation energy effects on Casson fluid,” AIP Adv., vol. 10, no. 2, pp. 025009, Feb. 2020. DOI: 10.1063/1.5140349.
  • S. Z. Abbas et al., “Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy,” Comput. Methods Prog. Biomed., vol. 190, pp. 105362, Jul. 2020. DOI: 10.1016/j.cmpb.2020.105362.
  • T. Hayat, S. Farooq, B. Ahmad, and A. Alsaedi, “Consequences of variable thermal conductivity and activation energy on peristalsis in curved configuration,” J. Mol. Liq., vol. 263, pp. 258–267, Aug. 2018. DOI: 10.1016/j.molliq.2018.04.109.
  • T. Salahuddin, M. Arshad, N. Siddique, A. S. Alqahtani, and M. Y. Malik, “Thermophyical properties and internal energy change in Casson fluid flow along with activation energy,” Ain Shams Eng. J., vol. 11, no. 4, pp. 1355–1365, Dec. 2020. DOI: 10.1016/j.asej.2020.02.011.
  • M. I. Khan et al., “Slip flow of micropolar nanofluid over a porous rotating disk with motile microorganisms, nonlinear thermal radiation and activation energy,” Int. Commun. Heat Mass Transf., vol. 122, pp. 105161, Mar. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105161.
  • W. Ibrahim and M. Negera, “The investigation of MHD williamson nanofluid over stretching cylinder with the effect of activation energy,” Adv. Math. Phys., vol. 2020, pp. 1–16, Jan. 2020. DOI: 10.1155/2020/9523630.
  • A. Alhowaity, Y. Mehmood, H. Hamam, and M. Bilal, “Radiative flow of nanofluid past a convected vertical Riga plate with activation energy and nonlinear heat generation,” Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., pp. 095440892211264, Oct. 2022. DOI: 10.1177/09544089221126439.
  • K. Ramesh et al., “Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy,” Surf. Interfaces, vol. 21, pp. 100749, Dec. 2020. DOI: 10.1016/j.surfin.2020.100749.
  • Q. Raza et al., “Insight into dynamic of mono and hybrid nanofluids subject to binary chemical reaction, activation energy, and magnetic field through the porous surfaces,” Mathematics, vol. 10, no. 16, pp. 3013, Aug. 2022. DOI: 10.3390/math10163013.
  • Y. M. Chu et al., “Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104893, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.
  • K. Ahmed, L. B. McCash, T. Akbar, and S. Nadeem, “Effective similarity variables for the computations of MHD flow of Williamson nanofluid over a nonlinear stretching surface,” Processes, vol. 10, no. 6, pp. 1119, Jun. 2022. DOI: 10.3390/pr10061119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.