Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
176
Views
3
CrossRef citations to date
0
Altmetric
Articles

Analysis of nonlinear thermal radiation and entropy on combined convective ternary (SWCNT-MWCNT-Fe3O4) Eyring–Powell nanoliquid flow over a slender cylinder

ORCID Icon & ORCID Icon
Pages 1042-1062 | Received 05 Jan 2023, Accepted 17 Mar 2023, Published online: 03 Apr 2023

References

  • M. H. Esfe et al., “A novel applicable experimental study on the thermal behaviour of SWCNTs(60%)-MgO(40%)/EG hybrid nanofluid by focusing on the thermal conductivity,” Powder Technol., vol. 342, pp. 998–1007, 2019. DOI: 10.1016/j.powtec.2018.10.008.
  • H. Maleki et al., “Heat transfer and fluid flow of pseudoplastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation,” J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1643–1654, 2019. DOI: 10.1007/s10973-018-7559-2.
  • S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, IL, USA: Argonne National Lab, 1995.
  • M. Ali et al., “Important features of expanding/contracting cylinder for cross magneto-nanofluid flow,” Chaos Solit. Fract., vol. 133, pp. 109656, 2020. DOI: 10.1016/j.chaos.2020.109656.
  • N. S. M. Sahid et al., “Experimental investigation on the performance of the TiO2 and ZnO hybrid nanocoolant in ethylene glycol mixture towards AA6061-T6 machining,” Int. J. Automot. Mech. Eng., vol. 14, no. 1, pp. 3913–3926, 2017. DOI: 10.15282/ijame.14.1.2017.8.0318.
  • H. B. Ma et al., “Effect of nanofluid on the heat transport capability in an oscillating heat pipe,” Appl. Phys. Lett., vol. 88, no. 14, pp. 143116, 2006. DOI: 10.1063/1.2192971.
  • T. P. Otanicar et al., “Nanofluidbased direct absorption solar collector,” J. Renew. Sustain. Energy, vol. 2, no. 3, pp. 033102, 2010. DOI: 10.1063/1.3429737.
  • R. Singh and J. W. Lillard Jr., “Nanoparticle-based targeted drug delivery,” Exp. Mol. Pathol., vol. 86, no. 3, pp. 215–223, 2009. DOI: 10.1016/j.yexmp.2008.12.004.
  • M. Sheikholeslami et al., “Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus,” J. Clean. Prod., vol. 221, pp. 885–898, 2019. DOI: 10.1016/j.jclepro.2019.02.075.
  • S. J. Tans et al., “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, no. 6624, pp. 474–477, 1997. DOI: 10.1038/386474a0.
  • J. W. G. Wilder et al., “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 59–62, 1998. DOI: 10.1038/34139.
  • M. F. Yu et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, no. 5453, pp. 637–640, 2000. DOI: 10.1126/science.287.5453.637.
  • R. Sadri et al., “An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 151, 2014. DOI: 10.1186/1556-276X-9-151.
  • S. Manjunatha et al., “Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet,” J. Appl. Comput. Mech., vol. 8, pp. 1279–1286, 2022.
  • U. Nazir et al., “Significant production of thermal energy in partially ionised hyperbolic tangent material based on ternary hybrid nanomaterials,” Energies, vol. 14, no. 21, pp. 6911, 2021. DOI: 10.3390/en14216911.
  • A. S. Oke, “Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 16015–16031, 2022. DOI: 10.1007/s13369-022-06838-x.
  • K. Motahari et al., “Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2 (20-80)/20W50 hybrid nano-lubricant,” Chin. J. Chem. Eng., vol. 26, no. 1, pp. 152–158, 2018. DOI: 10.1016/j.cjche.2017.06.011.
  • Y. Yao et al., “Self-supported Co9S8- Ni3S2-CNTs/NF electrode with the super wetting multistage micro-nanostructure for efficient bifunctional overall water splitting,” J. Colloid Interface Sci., vol. 616, pp. 287–297, 2022. DOI: 10.1016/j.jcis.2022.02.071.
  • L. Liu et al., “Constructing a Z-scheme ZnIn2S4- S/CNTs/RP nanocomposite with modulated energy band alignment for enhanced photocatalytic hydrogen evolution,” J. Colloid Interface Sci., vol. 608, no. Pt 1, pp. 482–492, 2022. DOI: 10.1016/j.jcis.2021.09.145.
  • R. Kumar et al., “Heat transfer analysis on unsteady natural convection flow of silver nanofluid in a porous square cavity using local thermal non-equilibrium model,” Indian J. Phys., vol. 96, no. 7, pp. 2065–2078, 2021. DOI: 10.1007/s12648-021-02137-7.
  • R. Kumar et al., “Transportation of magnetite nanofluid flow and heat transfer over a rotating porous disk with Arrhenius activation energy: Fourth order Noumerov’s method,” Chin. J. Phys., vol. 69, pp. 172–185, 2022. DOI: 10.1016/j.cjph.2020.11.018.
  • G. S. Seth et al., “Thermo-diffusion effects on the magnetohydrodynamic natural convection flow of a chemically reactive Brinkman type nanofluid in a porous medium,” Bulg. Chem. Commun., vol. 51, no. 2, pp. 168–179, 2019. DOI: 10.34049/bcc.51.2.4577.
  • N. Acharya et al., “On the mixed convective carbon nanotube flow over a convectively heated curved surface,” J. Heat Transf., vol. 49, no. 4, pp. 1713–1735, 2020. DOI: 10.1002/htj.21687.
  • K. Muhammad et al., “OHAM analysis of Newtonian heating in mixed convective flow of CNTs over a stretched cylinder,” Alex. Eng. J., vol. 61, no. 5, pp. 3697–3707, 2022. DOI: 10.1016/j.aej.2021.08.072.
  • R. Nath and K. Murugesan, “Numerical investigation of double-diffusive mixed convection of Fe3O4/Cu/Al2O3-water nanofluid flow through a backward-facing-step channel subjected to magnetic field,” Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 3, pp. 889–914, 2022. DOI: 10.1108/HFF-02-2021-0151.
  • A. Hussain, M. Y. Maliki, M. Awais, T. Salahuddin, and S. Bilal, “Computational and physical aspects of MHD Prandtl–Eyring fluid flow analysis over a stretching sheet,” Neural Comput. Appl., vol. 31, pp. 425–433, 2019.
  • M. A. Qureshi, “Thermal capability and entropy optimization for Prandtl-Eyring hybrid nanofluid flow in solar aircraft implementation,” Alex. Eng. J., vol. 61, no. 7, pp. 5295–5307, 2022. DOI: 10.1016/j.aej.2021.10.051.
  • M. Y. Malik et al., “Mixed convection flow of MHD Eyring-Powell nanofluid over a stretching sheet: A numerical study,” AIP Adv., vol. 5, no. 11, pp. 117118, 2015. DOI: 10.1063/1.4935639.
  • B. Mallick and J. C. Misra, “Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field,” Eng. Sci. Technol. Int. J., vol. 22, no. 1, pp. 266–281, 2019. DOI: 10.1016/j.jestch.2018.12.001.
  • S. U. Khan et al., “Simultaneous effects of bioconvection and velocity slip in three-dimensional flow of Eyring-Powell nanofluid with Arrhenius activation energy and binary chemical reaction,” Int. Commun. Heat Mass Transf., vol. 117, pp. 104738, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104738.
  • E. O. Fatunmbi and A. T. Adeosun, “Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104913, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104913.
  • O. A. Abo-Zaid et al., “MHD Powell–Eyring dusty nanofluid flow due to stretching surface with heat flux boundary condition,” J. Egypt. Math. Soc., vol. 29, no. 1, pp. 14, 2021. DOI: 10.1186/s42787-021-00123-w.
  • S. R. R. Reddy et al., “Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring-Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy,” Adv. Powder Technol., vol. 30, no. 12, pp. 3203–3213, 2019. DOI: 10.1016/j.apt.2019.09.029.
  • A. Riaz et al., “Entropy analysis on a three-dimensional wavy flow of Eyring–Powell nanofluid: A comparative study,” Math. Probl. Eng., vol. 2021, pp. 1–14, 2021. DOI: 10.1155/2021/6672158.
  • M. Waqas et al., “Visualization of stratification based Eyring–Powell material flow capturing nonlinear convection effects,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2577–2584, 2021. DOI: 10.1007/s10973-020-10234-8.
  • A. Bhattacharyya et al., “Modeling and interpretation of peristaltic transport of Eyring–Powell fluid through uniform/non-uniform channel with Joule heating and wall flexibility,” Chin. J. Phys., vol. 80, pp. 167–182, 2022. DOI: 10.1016/j.cjph.2022.06.018.
  • M. Patil and A. Datta, “Three-dimensional aeromechanical analysis of lift-offset coaxial rotors,” AIAA SciTech 2022 Forum, AIAA Paper 2022. San Diego, California, Jan. 3–7, 2022. DOI: 10.2514/6.2022-0928.
  • M. Patil and A. Datta, “Time-parallel trim solution of helicopter rotors with large-scale 3D structures,” AIAA SciTech 2021 Forum, AIAA Paper 2021, Virtual, Jan. 11–15 & 19–21, 2021. DOI: 10.2514/6.2021-1079.
  • M. Patil and A. Datta, “A scalable time-parallel solution of periodic rotor dynamics in X3D,” J. Am. Helicopter Soc., vol. 66, no. 4, pp. 1–16, 2021. DOI: 10.4050/JAHS.66.042007.
  • M. Patil et al., “An integrated three-dimensional aeromechanical analysis of lift-offset coaxial rotors,” presented at the 78th Vertical Flight Society Forum, Fort Worth, TX, May 2022. DOI: 10.4050/F-0078-2022-17518.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • M. I. Khan et al., “Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation,” Chin. J. Chem. Eng., vol. 31, pp. 17–25, 2021. DOI: 10.1016/j.cjche.2020.08.005.
  • N. S. Khan et al., “Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks,” Sci. Rep., vol. 10, no. 1, pp. 4448, 2020. DOI: 10.1038/s41598-020-61172-2.
  • R. Kumar et al., “Entropy generation of von Karman’s radiative flow with Al2O3 and Cu nanoparticles between two coaxial rotating disks: A finite-element analysis,” Eur. Phys. J. Plus, vol. 134, no. 12, pp. 597, 2019. DOI: 10.1140/epjp/i2019-13086-0.
  • G. S. Seth et al., “Entropy generation in hydromagnetic nanofluid flow over a nonlinear stretching sheet with Navier’s velocity slip and convective heat transfer,” Phys. Fluids, vol. 30, pp. 122003, 2018. DOI: 10.1063/1.5054099.
  • G. S. Seth et al., “Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy-Forchheimer porous medium: A numerical study,” J. Mol. Liq., vol. 268, no. 15, pp. 637–646, 2018. DOI: 10.1016/j.molliq.2018.07.071.
  • P. M. Patil, “ Effects of surface mass transfer on steady mixed convection flow from vertical stretching sheet with variable wall temperature and concentration,” Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 3, pp. 287–305, 2012. DOI: 10.1108/09615531211208015.
  • P. M. Patil and M. Kulkarni, “ Nonlinear mixed convective nanofluid flow along moving rough vertical plate,” Rev. Mex. de Fis., vol. 66, no. 2, pp. 153–161, 2020. DOI: 10.31349/RevMexFis.66.153.
  • P. M. Patil et al., “Flow and heat transfer over a moving vertical plate in a parallel free stream: Role of internal heat generation or absorption,” Chem. Engng. Commun., vol. 199, no. 5, pp. 658–672, 2012. DOI: 10.1080/00986445.2011.614978.
  • P. M. Patil et al., “Unsteady heat and mass transfer over a vertical stretching sheet in a parallel free stream with variable wall temperature and concentration,” Numer. Method Part. Differ. Equ., vol. 28, no. 3, pp. 926–941, 2012. DOI: 10.1002/num.20665.
  • P. M. Patil et al., “A computational study of the triple-diffusive nonlinear convective nanoliquid flow over a wedge under convective boundary constraints,” Int. Commu. Heat Mass Transf., vol. 128, pp. 105561, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105561.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • P. M. Patil and M. Kulkarni, “Analysis of MHD mixed convection in an Ag-TiO2 hybrid nanofluid flow past a slender cylinder,” Chin. J. Phys., vol. 73, pp. 406–419, 2021. DOI: 10.1016/j.cjph.2021.07.030.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873, pp. I–II.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • E. V. Timofeeva et al., “Particle shape effects on thermophysical properties of alumina nanofluids,” J. Appl. Phys., vol. 106, no. 1, pp. 0143041–01430410, 2009. DOI: 10.1063/1.3155999.
  • P. M. Patil et al., “Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen,” Alex. Eng. J., vol. 60, no. 1, pp. 1043–1053, 2021. DOI: 10.1016/j.aej.2020.10.029.
  • P. M. Patil and S. Roy, “ Unsteady mixed convection flow from a moving vertical plate in a parallel free stream: Influence of heat generation or absorption,” Int. J. Heat Mass Transf., vol. 53, no. 2122, pp. 4749–4756, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.017.
  • P. M. Patil et al., “Influence of nonlinear thermal radiation on mixed convective hybrid nanofluid flow about a rotating sphere,” Heat Transf., vol. 51, no. 6, pp. 5874–5895, 2022. DOI: 10.1002/htj.22573.
  • P. M. Patil et al., “Impacts of surface roughness on mixed convection nanofluid flow with liquid hydrogen/nitrogen diffusion,” Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 6, pp. 2146–2174, DOI: 10.1108/HFF-11-2018-0703.
  • R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice Hall, 2000.
  • A. Mucoglu and T. S. Chen, “Buoyancy effects on forced convection along a vertical cylinder with uniform surface heat flux,” J. Heat Transf., vol. 98, no. 3, pp. 523–525, 1976. DOI: 10.1115/1.3450591.
  • P. J. Singh and S. Roy, “Mixed convection along a rotating vertical slender cylinder in an axial flow,” Int. J. Heat Mass Transf., vol. 51, no. 34, pp. 717–723, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.