Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
108
Views
3
CrossRef citations to date
0
Altmetric
Articles

Heat exchanger with semi-circular tubes and mountings for effective heat transfer

& ORCID Icon
Pages 1106-1129 | Received 07 Sep 2022, Accepted 23 Mar 2023, Published online: 04 Apr 2023

References

  • Y. A. Cengel, Heat Transfer: A Practical Approach, 2nd ed. New York: McGraw-Hill, 2002.
  • E. C. Huge, “Experimental investigation of effects of equipment size on convection heat transfer and flow resistance in cross flow of gases over tube banks,” Trans. ASME, vol. 59, no. 7, pp. 573–581, 1937. DOI: 10.1115/1.4036524.
  • O. L. Pierson, “Experimental investigation of the influence of tube arrangement on convection heat transfer and flow resistance in cross flow of gases over tube banks,” Trans. ASME, vol. 59, no. 7, pp. 563–572, 1937. https://cybra.lodz.pl/Content/6174/Trans_vol.67_no.8_1945.pdf. DOI: 10.1115/1.4020555.
  • G. A. Omohundro, O. P. Bergelin and A. P. Colburn, “Heat transfer and fluid friction during flow across banks of tubes,” ASME J. Heat Trans., vol. 71, pp. 27–34, 1949. https://www.worldcat.org/title/heat-transfer-and-fluid-friction-during-viscous-flow-across-banks-of-tubes/oclc/35952941.
  • O. P. Bergelin, E. S. Davis and H. L. Hull, “A study of three tube arrangements in un-baffled tubular heat exchangers,” ASME J. Heat Trans., vol. 71, pp. 369–374, 1949. DOI: 10.1115/1.4017075.
  • O. P. Bergelin, G. A. Brown, H. L. Hull and F. W. Sullivan, “Heat transfer and fluid friction during flow across banks of tubes – III: A study of tube spacing and tube size,” ASME J. Heat Trans, vol. 72, pp. 881–888, 1950. DOI: 10.1115/1.4016867.
  • O. P. Bergelin, G. A. Brown and S. C. Doberstein, “Heat transfer and fluid friction during flow across banks of tubes – IV: A study of the transition zone between viscous and turbulent flow,” ASME J Heat Trans, vol. 74, pp. 953–959, 1952. DOI: 10.1115/1.4016957.
  • C. E. Jones and E. S. Monroe, “Convection heat transfer and pressure drop of air flowing across in-line tube banks: Part I – Apparatus, procedures, and special effects,” ASME J Heat Trans, vol. 80, pp. 18–24, 1958. DOI: 10.1115/1.4012240.
  • A. J. Gram, C. O. Mackey and E. S. Monroe, “Convection heat transfer and pressure drop of air flowing across in line tube banks: Part II – Correlation of data for ten row-deep tube banks,” Trans. ASME, vol. 80, pp. 25–35, 1958. DOI: 10.1115/1.4012241.
  • A. Zukauskas, “Heat transfer from tubes in cross flow,” Adv. Heat Trans, vol. 8, pp. 93–160, 1972. DOI: 10.1016/S0065-2717(08)70038-8.
  • S. Aiba, H. Tsuchida and T. Ota, “Heat transfer around tubes in in-line tube banks,” Bull. JSME, vol. 25, no. 204, pp. 919–926, 1982. DOI: 10.1299/jsme1958.25.919.
  • S. Aiba, H. Tsuchida and T. Ota, “Heat transfer around tubes in staggered tube banks,” Bull. JSME, vol. 25, no. 204, pp. 927–933, 1982. DOI: 10.1299/jsme1958.25.927.
  • A. Zukauskas and R. Ulinskas, Heat Transfer in Tube Banks in Cross Flow. Washington, DC: Hemisphere, 1988, https://www.osti.gov/biblio/5833318-heat-transfer-tube-banks-crossflow.
  • W. A. Khan, J. R. Culham and M. M. Yovanovich, “Fluid flow and heat transfer from a cylinder between parallel planes,” J. Thermophysics Heat Trans., vol. 18, no. 3, pp. 395–403, 2004. DOI: 10.2514/1.6186.
  • C. H. Williamson, “Vortex dynamics in the cylinder wake,” Annu. Rev. Fluid Mech, vol. 28, no. 1, pp. 477–539, 1996. DOI: 10.1146/annurev.fl.28.010196.002401.
  • M. Braza, P. Chasaing and H. Ha. Minh, “Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder,” J. Fluid Mech., vol. 165, no. 1, pp. 79–130, 1986. DOI: 10.1017/S0022112086003014.
  • R. A. Wirtz, R. Sohal and H. Wang, “Thermal performance of pin-fin fan-sink assemblies,” ASME J Elec Packag, vol. 119, no. 1, pp. 26–31, 1997. DOI: 10.1115/1.2792197.
  • E. M. Sparrow, J. P. Abraham and J. C. K. Tong, “Archival correlations for average heat transfer coefficients for 3 non-circular and circular cylinders and for spheres in 4 cross-flow,” Int. J. Heat Mass Trans., vol. 47, no. 24, pp. 5285–5296, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.06.024.
  • A. Gholami, A. M. Wahid and H. A. Mohammed, “Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns,” Int. J. Heat Mass Trans, vol. 106, pp. 573–592, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.028.
  • A. Gholami, H. A. Mohammed, M. A. Wahid and M. Khiadanid, “Parametric design exploration of fin-and-oval tube compact heat exchangers performance with a new type of corrugated fin patterns,” Int. J. Thermal Sci, vol. 144, pp. 173–190, 2019. DOI: 10.1016/j.ijthermalsci.2019.05.022.
  • C. F. Lange, F. Durst and M. Breuer, “Momentum and heat transfer from cylinder in laminar cross-flow at 10−4 ≤ Re ≤ 200,” Int. J. Heat Mass Trans, vol. 41, no. 22, pp. 3409–3430, 1998. DOI: 10.1016/S0017-9310(98)00077-5.
  • W. A. Khan, J. R. Culham and M. M. Yovanovich, “Convection heat transfer from tube banks in cross flow: Analytical approach,” Int. J. Heat Mass Trans, vol. 49, no. 25-26, pp. 4831–4838, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.042.
  • J.-H. Chen, W. G. Pritchard and S. J. Tavener, “Bifurcation of flow past a cylinder between parallel plates,” J. Fluid Mech, vol. 23, pp. 284, 1995. DOI: 10.1017/S0022112095000255.
  • L. Zovatto and G. Pedrizzetti, “Flow about a circular cylinder between parallel walls,” J, Fluid Mech, vol. 1, pp. 440, 2001. DOI: 10.1017/S0022112001004608.
  • M. Sahin and R. G. Owens, “A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder,” Flow Phy, vol. 16, pp. 5, 2004. DOI: 10.1063/1.1668285.
  • S. Mettu, N. Verma and R. P. Chhabra, “Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel,” Heat Mass Transfer, vol. 42, no. 11, pp. 1037–1048, 2006. DOI: 10.1007/s00231-005-0074-6.
  • R. P. Bharti, R. P. Chhabra and V. Eswaran, “A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder,” Heat Mass Transfer, vol. 43, no. 7, pp. 639–648, 2007. DOI: 10.1007/s00231-006-0155-1.
  • C. Jyoti, N. Verma and R. P. Chhabra, “Wall effects in flow past a circular cylinder in a plane channel: A numerical study,” J. Chem. Engn. Process, vol. 43, pp. 1529–1537, 2004. DOI: 10.1016/j.cep.2004.02.004.
  • R. Senthil Kumar and S. Jayavel, “Influence of flow shedding frequency on convection heat transfer from bank of circular tubes in heat exchangers under cross flow,” Int. J. Heat Mass Trans, vol. 105, pp. 376–393, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.097.
  • T. Igarashi, “Flow characteristics around a circular cylinder with a slit,” Bull. JSME, vol. 21, no. 154, pp. 656–664, 1978. DOI: 10.1299/jsme1958.25.1389.
  • H. Baek and G. E. Karniadakis, “Suppressing vortex-induced vibrations via passive means,” J. Fluids Struc., vol. 25, no. 5, pp. 848–866, 2009. DOI: 10.1016/j.jfluidstructs.2009.02.006.
  • J. F. Olsen and S. Rajagopalan, “Vortex shedding behind modified circular cylinders,” J. Wind Engin. Indus. Aerodyn., vol. 86, no. 1, pp. 55–63, 2000. DOI: 10.1016/j.flowmeasinst.2011.07.003.
  • B. H. Peng, J. J. Miau, F. Bao, L. D. Weng, C. C. Chao and C. C. Hsu, “Performance of vortex shedding from a circular cylinder with a slit normal to the stream,” Flow Measur. Instrument, vol. 25, pp. 54–62, 2012. DOI: 10.1016/j.flowmeasinst.2011.07.003.
  • A. Lavish Ordia, A. Venugopal, S. Agrawal and V. Prabhu, “Vortex shedding characteristics of a cylinder with a parallel slit placed in a circular pipe,” J. Vis., vol. 20, no. 2, pp. 263–275, 2017. DOI: 10.1007/s12650-016-0398-y.
  • D.-L. Gao, W.-L. Chen, H. Li and H. Hu, “Flow around a slotted circular cylinder at various angles of attack,” Exp Fluids, vol. 58, no. 10, pp. 132, 2017. DOI: 10.1007/s00348-017-2417-8.
  • H.-L. Ma and C.-H. Kuo, “Control of boundary layer flow and lock-on of wake behind a circular cylinder with a normal slit,” Euro. J. Mech. B/Fluids, vol. 59, pp. 99–114, 2016. DOI: 10.1016/j.euromechflu.2016.05.001.
  • Z. Bao, G. Qin, W. He and Y. Wang, “Numerical investigation of flow around a slotted circular cylinder at low Reynolds number,” J. Wind Engin. Ind. Aerodyn., vol. 183, pp. 273–282, 2018. DOI: 10.1016/j.jweia.2018.11.010.
  • J. Wang and C. Wang, “Heat transfer and flow characteristics of a rectangular channel with a small circular cylinder having slit-vent vortex generator,” Int. J. Therm. Sci., vol. 104, pp. 158–171, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.006.
  • L. Jadon and V. Arumuru, “Numerical investigation on heat transfer and flow characteristics of a confined circular cylinder with slit,” J. Therm. Sci. Engin. App., vol. 12, no. 5, pp. 051007, 2020. DOI: 10.1115/1.4046061Fan.
  • P. Shinde and C-x Lin, “A heat transfer and friction factor correlation for low air-side Reynolds number applications of compact heat exchangers (1535-RP),” Sci. Tech. Built Environ., vol. 23, no. 1, pp. 192–210, 2017. DOI: 10.1080/23744731.2016.1203240.
  • R. K. Shah, “Research needs in low reynolds number flow heat exchangers,” Heat Trans. Engin., vol. 3, no. 2, pp. 49–61, 1981. DOI: 10.1080/01457638108939580.
  • M. Kawaguti and P. Jain, “Numerical study of a viscous fluid flow past a circular cylinder,” J. Phys. Soc. Jpn, vol. 21, no. 10, pp. 2055–2062, 1966. DOI: 10.1143/JPSJ.21.2055.
  • H. M. Badr, “A theoretical study of laminar mixed convection from a horizontal cylinder in a cross stream,” Int. J. Heat Mass Trans., vol. 26, no. 5, pp. 639–653, 1983. http://www.sciencedirect.com/science/article/pii/0017931083900145. DOI: 10.1016/0017-9310(83)90014-5.
  • S. C. R. Dennis, J. D. Hudson and N. Smith, “Steady laminar forced convection from a circular cylinder at low Reynolds numbers,” Phys. Fluids, vol. 11, no. 5, pp. 933–940, 1968. DOI: 10.1063/1.1692061.
  • S. C. R. Dennis and C. Gau-Zu, “Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100,” J. Fluid Mech., vol. 42, no. 3, pp. 471–489, 1970. DOI: 10.1017/S0022112070001428.
  • J. Cole and A. Roshko, “Heat transfer from wires at Reynolds numbers in the Oseen range,” Proc Heat Trans. Fluid Mech. Inst., vol. 6, pp. 357–384, 1954. Berkeley CA University of California.
  • D. Sucker and H. Brauer, “Fluid dynamikbeiquerangestromtenZylindern,” WarmeStoubertragung, vol. 8, pp. 149–158, 1975. DOI: 10.1007/BF01681556.
  • C. W. Oseen, “UÝber die Stokes sche Formel und uber eineverwandte Aufgabe in der Hydrodynamik,” Ark Mat Astron Fys, vol. 6, no. 29, pp. 1–29, 1910. Uber die Stokes’sche Formel und uber eineverwandte Aufgabe in der Hydrodynamik | CiNii Research.
  • H. Lamb, “On the uniform motion of a sphere through a viscous fluid,” Phil. Mag, vol. 21, no. 121, pp. 112–121, 1911. DOI: 10.1080/14786440108637012.
  • A. Zukauskas, “Heat transfer from tubes in cross flow,” Adv. Heat Trans., vol. 8, pp. 87–159, 1987. DOI: 10.1016/S0065-2717(08)70038-8.
  • R. M. Fand and K. K. Keswani, “A continuous correlation equation for heat transfer from cylinders to air in cross flow for reynold’s numbers from 10-2 to 2(10) 5,” Int. J. Heat Mass Trans, vol. 15, no. 3, pp. 559–562, 1972. DOI: 10.1016/0017-9310(72)90219-0.
  • R. M. Fand and K. K. Keshwani, “Recalculation of Hilpert’s constants,” Trans. ASME, vol. 6, pp. 224–226, 1973. DOI: 10.1115/1.3450030.
  • S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Trans., vol. 18, no. 9, pp. 1049–1053, 1975. DOI: 10.1016/0017-9310(75)90222-7.
  • S. W. Churchill and M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Trans, vol. 99, no. 2, pp. 300–306, 1977. DOI: 10.1115/1.3450685.
  • E. R. G. Eckert and E. Soehngen, “Distribution of heat-transfer coefficients around circular cylinders in cross flow at reynolds numbers from 20 to 500,” Trans. ASME, vol. 74, no. 3, pp. 343–346, 1952. DOI: 10.1115/1.4015778.
  • S. Bhattacharyya, H. Chattopadhyay and A. Haldar, “Design of twisted tape turbulator at different entrance angle for heat transfer enhancement in a solar heater,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 7, no. 1, pp. 118–126, 2018. DOI: 10.1016/j.bjbas.2017.08.003.
  • A. W. Fan, J. J. Deng, A. Nakayama and W. Liu, “Parametric study on turbulent heat transfer and flow characteristics in a circular tube fitted with louvered strip inserts,” Int. J. Heat Mass Trans., vol. 55, no. 19–20, pp. 5205–5213, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.