Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
295
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of combined effects of radiation and convection heat transfer from tube banks placed in a participating medium

ORCID Icon & ORCID Icon
Pages 1191-1217 | Received 16 Aug 2022, Accepted 02 Apr 2023, Published online: 01 May 2023

References

  • Y. N. Chen, “Flow-induced vibration and noise in tube-bank heat exchangers due to Von Kar-man streets,” J. Manuf. Sci. Eng., vol. 90, no. 1, pp. 134–146, Feb. 1968. DOI: 10.1115/1.3604587.
  • D. S. Weaver, J. A. Fitzpatrick and M. Elkashlan, “Strouhal numbers for heat exchanger tube arrays in cross flow,” J. Press. Vessel Technol., vol. 109, no. 2, pp. 219–223, May 1987. DOI: 10.1115/1.3264899.
  • S. Ziada, A. Oengören and E. T. Bühlmann, “On acoustical resonance in tube arrays part I: Experiments,” J. Fluids Struct., vol. 3, no. 3, pp. 293–314, May 1989. DOI: 10.1016/S0889-9746(89)90083-2.
  • S. Aiba, H. Tsuchida and T. Ota, “Heat transfer around tubes in staggered tube banks,” Bull. JSME, vol. 25, no. 204, pp. 927–933, 1982. DOI: 10.1299/jsme1958.25.927.
  • D. Traub, “Turbulent heat transfer and pressure drop in plain tube bundles,” Chem. Eng. Process.: Process Intensif., vol. 28, no. 3, pp. 173–181, Dec. 1990. DOI: 10.1016/0255-2701(90)80018-Z.
  • D. B. Murray, “A comparison of heat transfer in staggered and inline tube banks with a gas-particle crossflow,” Exp. Therm. Fluid Sci., vol. 6, no. 2, pp. 177–185, Feb. 1993. DOI: 10.1016/0894-1777(93)90027-G.
  • S. Y. Yoo, H. K. Kwon and J. H. Kim, “A study on heat transfer characteristics for staggered tube banks in cross-flow,” J. Mech. Sci. Technol., vol. 21, no. 3, pp. 505–512, Mar. 2007. DOI: 10.1007/BF02916312.
  • S. G. Mavridou, E. Konstandinidis and D. G. Bouris, “Experimental evaluation of pairs of inline tubes of different size as components for heat exchanger tube bundles,” Int. J. Heat and Mass Transf., vol. 90, pp. 280–290, Nov. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.047.
  • A. Slaouti and P. K. Stansby, “Flow around two circular cylinders by the random-vortex method,” J. Fluids Struct., vol. 6, no. 6, pp. 641–670, Nov. 1992. DOI: 10.1016/0889-9746(92)90001-J.
  • S. Mittal, V. Kumar and A. Raghuvanshi, “Unsteady incompressible flows past two cylinders in tandem and staggered arrangements,” Int. J. Numer. Methods Fluids, vol. 25, no. 11, pp. 1315–1344, Dec. 1997. DOI: 10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P.
  • J. R. Meneghini, F. Saltara, C. L. R. Siqueira and J. A. Ferrari, “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements,” J. Fluids Struct., vol. 15, no. 2, pp. 327–350, Feb. 2001. DOI: 10.1006/jfls.2000.0343.
  • B. Sharman, F. S. Lien, L. Davidson and C. Norberg, “Numerical predictions of low Reynolds number flows over two tandem circular cylinders,” Int. J. Numer. Methods Fluids, vol. 47, no. 5, pp. 423–447, De. 2005. DOI: 10.1002/fld.812.
  • J. Cho and C. Son, “A numerical study of the fluid flow and heat transfer around a single row of tubes in a channel using immerse boundary method,” J. Mech. Sci. Technol., vol. 22, no. 9, pp. 1808–1820, May 2008. DOI: 10.1007/s12206-008-0507-5.
  • N. Mahir and Z. Altaç, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1309–1318, Oct. 2008. DOI: 10.1016/j.ijheatfluidflow.2008.05.001.
  • C. Liang, G. Papadakis and X. Luo, “Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: A numerical study,” Comput. Fluids, vol. 38, no. 4, pp. 950–964, Apr. 2009. DOI: 10.1016/j.compfluid.2008.10.005.
  • S. K. Panda, “Two-dimensional flow of power-law fluids over a pair of cylinders in a side-by-side arrangement in the laminar regime,” Braz. J. Chem. Eng., vol. 34, no. 2, pp. 507–530, Apr. 2017. DOI: 10.1590/0104-6632.20170342s20150504.
  • F. Zafar and M. M. Alam, “Mixed convection heat transfer from a circular cylinder submerged in wake,” Int. J. Mech. Sci., vol. 183, pp. 105733, Apr. 2020. DOI: 10.1016/j.ijmecsci.2020.105733.
  • Y. K. Gowda, B. S. V. P. Patnaik, P. A. Narayana and K. N. Seetharamu, “Finite element simulation of transient laminar flow and heat transfer past an in-line tube bank,” Int. J. Heat Fluid Flow, vol. 19, no. 1, pp. 49–55, Feb. 1998. DOI: 10.1016/S0142-727X(97)10005-4.
  • K. Luo, F. Wu, K. Qiu, Z. Wang and J. Fan, “Effects of preferential concentration on collision and erosion between solid particles and tube bank in a duct flow,” Int. J. Heat Mass Transf., vol. 83, pp. 372–381, Apr. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.027.
  • R. S. Kumar and S. Jayavel, “Influence of flow shedding frequency on convection heat transfer from bank of circular tubes in heat exchangers under cross flow,” Int. J. Heat Mass Transf., vol. 105, pp. 376–393, Feb. 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.097.
  • A. G. Churbanov, O. Iliev, V. F. Strizhov and P. N. Vabishchevich, “Numerical simulation of oxidation processes in a cross-flow around tube bundles,” Appl. Math. Model., vol. 59, pp. 251–271, Jul. 2018. DOI: 10.1016/j.apm.2018.01.047.
  • M. Erguvan and D. W. MacPhee, “Energy and exergy analyses of tube banks in waste heat recovery applications,” Energies, vol. 11, no. 8, pp. 2094, 2018. DOI: 10.3390/en11082094.
  • W. Gao, J. Zhao, X. Li, H. Zhao, Y. Zhang and X. Wu, “Heat transfer characteristics of carbon dioxide cross flow over tube bundles at supercritical pressures,” Appl. Therm. Eng., vol. 158, pp. 113786, Jul. 2019. DOI: 10.1016/j.applthermaleng.2019.113786.
  • A. R. Hayrullin, A. I. Haibullina and V. K. Ilyin, “Large-Eddy simulations of heat transfer in the tube bundle,” IOP Conf. Ser.: Earth Environ. Sci., vol. 720, no. 1, pp. 012037, Apr. 2021. DOI: 10.1088/1755-1315/720/1/012037.
  • Q. Hu, J. Wang, Y. Gao and W. Peng, “Numerical study of thermal-hydraulic and dust-deposition of tube bundles in an intermediate heat exchanger,” Int. J. Hydrogen Energy, vol. 47, no. 63, pp. 27187–27198, Jul. 2022. DOI: 10.1016/j.ijhydene.2022.06.023.
  • M. Faghri and N. Rao, “Numerical computation of flow and heat transfer in finned and unfinned tube banks,” Int. J. Heat Mass Transf., vol. 30, no. 2, pp. 363–372, Feb. 1987. DOI: 10.1016/0017-9310(87)90124-4.
  • C. J. Chen and T. S. Wung, “Finite analytic solution of convective heat transfer for tube arrays in crossflow: Part II—Heat transfer analysis,” J. Heat Transf., vol. 111, no. 3, pp. 641–648, 1989. DOI: 10.1115/1.3250730.
  • F. Zdravistch, C. A. Fletcher and M. Behnia, “Numerical laminar and turbulent fluid flow and heat transfer predictions in tube banks,” Int. J. Numer. Methods Heat Fluid Flow, vol. 5, no. 8, pp. 717–733, Aug. 1995. DOI: 10.1108/EUM0000000004086.
  • B. W. Floan and E. M. Sparrow, “Fluid flow in heat exchangers whose flow passages contain periodically deployed tubes,” Numer. Heat Transf., Part A: Appl., vol. 62, no. 2, pp. 81–94, Jul. 2012. DOI: 10.1080/10407790.2012.685125.
  • S. Sahamifar, F. Kowsary and M. H. Mazlaghani, “Generalized optimization of cross-flow staggered tube banks using a subscale model,” Int. Commun. Heat Mass Transf., vol. 105, pp. 46–57, Jun. 2019. DOI: 10.1016/j.icheatmasstransfer.2019.03.004.
  • Z. Khalifa, L. Pocher and N. Tilton, “Regimes of flow through cylinder arrays subject to steady pressure gradients,” Int. J. Heat Mass Transf., vol. 159, pp. 120072, Oct. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120072.
  • M. T. Erdinc, A. E. Aktas, M. N. Kuru, M. Bilgili and O. Aydin, “An optimization study on thermo-hydraulic performance arrays of circular and diamond shaped cross-sections in periodic flow,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105706, Dec. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105706.
  • R. Pravesh, A. Dhiman and R. P. Bharti, “Thermal features of mixed convection from an inline periodic array of circular cylinders in non-Newtonian power-law fluids,” Case Stud. Therm. Eng., vol. 36, pp. 102175, Aug. 2022. DOI: 10.1016/j.csite.2022.102175.
  • C. K. Chen, K. L. Wong and J. W. Cleaver, “Finite element solutions of laminar flow and heat transfer of air in a staggered and an in-line tube bank,” Int. J. Heat Fluid Flow, vol. 7, no. 4, pp. 291–300, Dec. 1986. DOI: 10.1016/0142-727X(86)90007-X.
  • A. S. Wilson and M. K. Bassiouny, "Modeling of heat transfer for flow across tube banks,” Chem. Eng. Process.: Process Intensif., vol. 39, no. 1, pp. 1–14, Jan. 2000. DOI: 10.1016/S0255-2701(99)00069-0.
  • E. Buyruk, “Numerical study of heat transfer characteristics on tandem cylinders, inline and staggered tube banks in cross-flow of air,” Int. Commun. Heat Mass Transf., vol. 29, no. 3, pp. 355–366, 2002. DOI: 10.1016/S0735-1933(02)00325-1.
  • Y. Wang, H. Tian, G. Shu, G. Yu, X. Ma and X. Li, “Simulation and optimization of metal-foam tube banks for heat transfer enhancement of exhaust heat exchangers,” Energy Procedia, vol. 142, pp. 3863–3869, Dec. 2017. DOI: 10.1016/j.egypro.2017.12.289.
  • A. Bender, A. M. Meier, J. M. Vaz and P. S. B. Zdanski, “A numerical study of forced convection in a new trapezoidal tube bank arrangement,” Int. Commun. Heat Mass Transf., vol. 91, pp. 117–124, Feb. 2018. DOI: 10.1016/j.icheatmasstransfer.2017.12.007.
  • A. J. Modi, N. A. Kalel and M. K. Rathod, “Thermal performance augmentation of fin-and-tube heat exchanger using rectangular winglet vortex generators having circular punched holes,” Int. J. Heat Mass Transf., vol. 158, pp. 119724, Sep. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119724.
  • M. Fujii, T. Fujii and T. Nagata, “A numerical analysis of laminar flow and heat transfer of air in an in-line tube bank,” Numer. Heat Transf., vol. 7, no. 1, pp. 89–102, 1984. DOI: 10.1080/01495728408961813.
  • M. N. Dhaubhadel, J. N. Reddy and D. P. Telionis, “Penalty finite-element analysis of coupled fluid flow and heat transfer for in-line bundle of cylinders in cross flow,” Int. J. Non-Linear Mech., vol. 21, no. 5, pp. 361–373, 1986. DOI: 10.1016/0020-7462(86)90020-X.
  • Y. Chang, A. N. Beris and E. E. Michaelides, “A numerical study of heat and momentum transfer for tube bundles in crossflow,” Int. J. Numer. Methods Fluids, vol. 9, no. 11, pp. 1381–1394, Nov. 1989. DOI: 10.1002/fld.1650091107.
  • A. M. F. El-Shaboury and S. J. Ormiston, “Analysis of laminar forced convection of air crossflow in in-line tube banks with nonsquare arrangements,” Numer. Heat Transf., Part A: Appl., vol. 48, no. 2, pp. 99–126, 2005. DOI: 10.1080/10407780590945452.
  • J. B. Huang and J. Y. Jang, “Numerical investigation of nanofluids laminar convective heat transfer through staggered and in-lined tube banks,” 2nd Int. Congr. Comput. Appl. Comput. Sci., vol. 144, pp. 483–490, 2012. DOI: 10.1007/978-3-642-28314-7_65.
  • D. Sahel, R. Benzeguir and T. Baki, “Heat transfer enhancement in a fin and tube heat exchanger with isosceles vortex generators,” mech, vol. 21, no. 6, pp. 457–464, Dec. 2016. DOI: 10.5755/j01.mech.21.6.12240.
  • M. A. Ahmed, M. M. Yaseen and M. Z. Yusoff, “Numerical study of convective heat transfer from tube bank in cross flow using nanofluid,” Case Stud. Therm. Eng., vol. 10, pp. 560–569, Sep. 2017. DOI: 10.1016/j.csite.2017.11.002.
  • Y. Q. Wang, L. A. Penner and S. J. Ormiston, “Analysis of laminar forced convection of air for crossflow in banks of staggered tubes,” Numer. Heat Transf.: Part A: Appl., vol. 38, no. 8, pp. 819–845, Mar. 2000. DOI: 10.1080/104077800457449.
  • J. M. Gorman, E. M. Sparrow and J. Ahn, “In-line tube-bank heat exchangers: Arrays with various numbers of thermally participating tubes,” Int. J. Heat Mass Transf., vol. 132, pp. 837–847, Apr. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.167.
  • M. Tahmasebiboldaji, M. Afrand, A. A. Barzinjy, S. M. Hamad and P. Talebizadehsardari, “Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes configuration,” Int. J. Mech. Sci., vol. 161-162, pp. 105056, Oct. 2019. DOI: 10.1016/j.ijmecsci.2019.105056.
  • W. Zhong, X. Cao and Y. Yuan, “Optimization of falling film thermosyphons bundle arrangement for large-scale cooling applications by genetic algorithm,” Appl. Therm. Eng., vol. 169, pp. 114892, Mar. 2020. DOI: 10.1016/j.applthermaleng.2019.114892.
  • J. Xie, S. Li, H. Yan and G. Xie, “Numerical analysis on thermal–hydraulic performances of staggered tube bundles for an aero-engine compact precooler,” J. Therm. Anal. Calorim., vol. 141, no. 1, pp. 387–399, Apr. 2020. DOI: 10.1007/s10973-020-09672-1.
  • J. D. Abraham, A. S. Dhoble and C. K. Mangrulkar, “Numerical analysis for thermo-hydraulic performance of staggered cross flow tube bank with longitudinal tapered fins,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104905, Nov. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104905.
  • H. Kalantari, S. A. Ghoreishi-Madiseh, J. C. Kurnia and A. P. Sasmito, “An analytical correlation for conjugate heat transfer in fin and tube heat exchangers,” Int. J. Therm. Sci., vol. 164, pp. 106915, Jun. 2021. DOI: 10.1016/j.ijthermalsci.2021.106915.
  • N. Li, et al., “Thermal and hydraulic performance of a compact precooler with mini-tube bundles for aero-engine,” Appl. Therm.Eng., vol. 200, pp. 117656, Jan. 2022. DOI: 10.1016/j.applthermaleng.2021.117656.
  • R. Deeb, “Numerical analysis of the effect of longitudinal and transverse pitch ratio on the flow and heat transfer of staggered drop-shaped tubes bundle,” Int. J. Heat Mass Transf., vol. 183, pp. 122123, Feb. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122123.
  • H. A. H. Ibrahim and M. Al-Qassimi, “Simulation of heat transfer in the convection section of fired process heaters,” Per. Pol. Chem. Eng., vol. 54, no. 1, pp. 33–40, 2010. DOI: 10.3311/pp.ch.2010-1.05.
  • M. Mirhosseini, A. Rezaniakolaei and L. Rosendahl, “Numerical study on heat transfer to an arc absorber designed for a waste heat recovery system around a cement kiln,” Energies, vol. 11, no. 3, pp. 671, Mar. 2018. DOI: 10.3390/en11030671.
  • M. Mirhosseini, A. Rezania and L. Rosendahl, “Harvesting waste heat from cement kiln shell by thermoelectric system,” Energy, vol. 168, pp. 358–369, Feb. 2019. DOI: 10.1016/j.energy.2018.11.109.
  • J. O. Kang and S. C. "Kim, “Heat transfer characteristics of heat exchangers for waste heat recovery from a billet casting process,” Energies, vol. 12, no. 14, pp. 2695, Jun. 2019. DOI: 10.3390/en12142695.
  • M. Mirhosseini, A. Rezania and L. Rosendahl, “Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln,” J. Clean. Prod., vol. 232, pp. 1321–1334, Sep. 2019. DOI: 10.1016/j.jclepro.2019.06.011.
  • J. J. Fierro, et al., “Techno-economic assessment of a rotary kiln shell radiation waste heat recovery system,” Therm. Sci. Eng. Progress, vol. 23, pp. 100858, Jun. 2021. DOI: 10.1016/j.tsep.2021.100858.
  • D. A. Kaminski, X. D. Fu and M. K. Jensen, “Numerical and experimental analysis of combined convective and radiative heat transfer in laminar flow over a circular cylinder,” Int. J. Heat Mass Transf., vol. 38, no. 17, pp. 3161–3169, Nov. 1995. DOI: 10.1016/0017-9310(95)00061-D.
  • P. Kumar and V. Eswaran, “The effect of radiation on flow in a conical diffuser,” Numer. Heat Transf., Part A: Appl., vol. 54, no. 10, pp. 962–982, 2008. DOI: 10.1080/10407780802424403.
  • D. Taler and J. Taler, “Simplified analysis of radiation heat exchange in boiler superheaters,” Heat Transf. Eng., vol. 30, no. 8, pp. 661–669, 2009. DOI: 10.1080/01457630802659953.
  • S. Pachpute, B. Premachandran and P. Talukdar, “A numerical study of combined forced convection and gas radiation from a circular cylinder in cross flow,” Heat Transf. Eng., vol. 36, no. 2, pp. 135–151, 2015. DOI: 10.1080/01457632.2014.909180.
  • G. Liesche and K. Sundmacher, "Radiation-based model reduction for the optimization of high temperature tube bundle reactors: Synthesis of hydrogen cyanide,” Comput. Chem. Eng., vol. 127, pp. 186–199, Aug. 2019. DOI: 10.1016/j.compchemeng.2019.05.007.
  • H. Sertel, “Boru demeti üzerinden akışta taşınım ve ışınım ile ısı geçişinin incelenmesi," M.Sc. Thesis, Mechanical Engineering Department, Esk. Osmangazi Univ., Eskişehir, Turkey,” 2020.
  • A. Mazgar, K. Jarray, F. Hajji and F. B. Nejma, “Interaction of mixed convection with non-gray gas radiation in a partially heated horizontal pipe: Entropy generation analysis,” HFF, vol. 32, no. 7, pp. 2431–2453, Oct. 2021. DOI: 10.1108/HFF-04-2021-0249.
  • ANSYS., 2020. ANSYS FLUENT User’s Guide, ANSYS INC., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA, 2020
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed, London, Pearson Education, 2007.
  • M. F. Modest, Radiative Heat Transfer, 3rd ed, New York, Academic Press, 2013.
  • J. R. Howell, M. P. Menguc and R. Siegel, Thermal Radiation Heat Transfer, 6th ed, New York, CRC Press, 2016.
  • T. L. Bergman, T. L, A. S. Lavine, F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed. New York: John Wiley & Sons, 2011.
  • A. Zukauskas and R. Ulinskas, “Single–phase fluid flow: Banks of plain and finned tubes,” in Heat Exchanger Design Handbook, Chap. 2.2.4, G. Hewitt, Ed. New York: Begell House, 1998.
  • E. S. Gaddis and V. Gnielinski, “Pressure Drop in Cross Flow Across Tube Bundles,” Int. Chem. Eng., vol. 25, pp. 1–15, 1985.
  • A. Zukauskas, A. Skrinska, J. Ziugzda and V. Gnielinski, “Single-Phase Convective Heat Transfer: Banks of Plain and Finned Tubes,” in Heat Exchanger Design Handbook (HEDH), CAHP 2.5.3, Ed. G. Hewitt. New York, Begell House, 1998.
  • Anonymous, “Convective Heat Transfer during Crossflow of Fluids over Plain Tube Banks, Engineering Sciences Data Unit (ESDU),” Rep. Item Number 73031, pp. 6, 1973.
  • R. K. Shah and D. P. Sekulic, Fundamentals of Heat Exchanger Design. Hoboken, NJ, USA: John Wiley & Sons, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.