Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
574
Views
1
CrossRef citations to date
0
Altmetric
Articles

Sisko fluid modeling and numerical convective heat transport analysis over-stretching device with radiation and heat dissipation

, , ORCID Icon, & ORCID Icon
Pages 1240-1258 | Received 17 Jan 2023, Accepted 26 Mar 2023, Published online: 19 Apr 2023

References

  • B. C. Sakiadis, “Boundary layer behaviour on a continuous solid surface: 1. Boundary layer equations for two-dimensional and axisymmetric flow,” AIChE J., vol. 7, no. 1, pp. 26–28, 1961. DOI: 10.1002/aic.690070108.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys. ZAMP, vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • W. H. H. Banks, “Similarity solutions of the boundary layer equation for a stretching wall,” J. Mecanique Theor. Appl., vol. 2, pp. 375–392, 1983.
  • R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet,” Appl. Math. Comput., vol. 184, no. 2, pp. 864–873, 2007. DOI: 10.1016/j.amc.2006.06.077.
  • M. Sajid, I. Ahmad, T. Hayat and M. Ayub, “Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet,” Commun. Nonlin. Sci. Numer. Simul., vol. 13, no. 10, pp. 2193–2202, 2008. DOI: 10.1016/j.cnsns.2007.06.001.
  • C. Y. Wang, “Analysis of viscous flow due to a stretching sheet with surface slip and suction,” Nonlin. Anal. Real World Appl., vol. 10, no. 1, pp. 375–380, 2009. DOI: 10.1016/j.nonrwa.2007.09.013.
  • E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” J. Phys. D Appl. Phys, vol. 32, no. 5, pp. 577–585, 1999. DOI: 10.1088/0022-3727/32/5/012.
  • W. R. Showalter, “The application of boundary layer theory to power law pseudoplastic fluids: similar solutions,” AIChE J., vol. 6, pp. 24–28, 1960.
  • H. I. Andersson, K. H. Bech and B. S. Dandapat, “Magnetohydrodynamic flow of a power-law fluid over a stretching sheet,” Int. J. Nonlin. Mech., vol. 27, no. 6, pp. 929–936, 1992. DOI: 10.1016/0020-7462(92)90045-9.
  • R. Cortell, “A note on magnetohydrodynamic flow of a power law fluid over a stretching sheet,” Appl. Math. Comput., vol. 168, no. 1, pp. 557–566, 2005. DOI: 10.1016/j.amc.2004.09.046.
  • A. W. Sisko, “The flow of lubricating greases,” Ind. Eng. Chem., vol. 50, no. 12, pp. 1789–1792, 1958. DOI: 10.1021/ie50588a042.
  • M. Khan, S. Munawar and S. Abbasbandy, “Steady flow and heat transfer of a Sisko fluid in a annular pipe,” Int. J. Heat Mass Transf., vol. 53, no. 7-8, pp. 1290–1297, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.037.
  • S. Nadeem and N. S. Akbar, “Peristaltic flow of Sisko fluid in a uniform inclined tube,” Acta Mech. Sin., vol. 26, no. 5, pp. 675–683, 2010. DOI: 10.1007/s10409-010-0356-1.
  • T. Hayat, R. J. Moitsheki and S. Abelman, “Stokes first problem for Sisko fluid over a porous wall,” Appl. Math. Comput., vol. 217, no. 2, pp. 622–628, 2010. DOI: 10.1016/j.amc.2010.05.099.
  • K. Mekheimer and M. A. El Kot, “Mathematical modelling of unsteady flow of a Sisko fluid through an isotropically tapered elastic arteries with time-variant overlapping stenosis,” Appl. Math. Model., vol. 36, no. 11, pp. 5393–5407, 2012. DOI: 10.1016/j.apm.2011.12.051.
  • N. Moallemi, I. Shafieenejad and A. B. Novinzadeh, “Exact Solutions for Flow of a Sisko Fluid in Pipe,” Iranian Math. Soc., vol. 37, pp. 49–60, 2011.
  • M. Y. Malik, A. Hussain, T. Salahuddin, M. Awais, S. Bilal and F. Khan, “Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study,” AIP Adv., vol. 6, no. 4, pp. 045118, 2016. DOI: 10.1063/1.4948458.
  • H. C. Brinkman, “Heat effects in capillary flow I,” Appl. Sci. Res., vol. 2, no. 1, pp. 120–124, 1951. DOI: 10.1007/BF00411976.
  • M. Thiagarajan and A. S. Sangeetha, “Nonlinear MHD flow and heat transfer over a power-law stretching plate with free stream pressure gradient and viscous dissipation in presence of variable thermal diffusivity,” Int. J. Basic Appl. Sci., vol. 1, no. 4, pp. 637–650, 2012. DOI: 10.14419/ijbas.v1i4.406.
  • G. Chand and R. N. Jat, “Viscous dissipation and radiation effects on MHD flow and heat transfer over an unsteady stretching surface in a porous medium,” Therm. Energy Power Eng., vol. 3, pp. 266–272, 2014.
  • W. A. Khan, “Impact of time-depenedent heat and mass transfer phenomenon for magnetized Sutterby nanofluid flow,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2140857.
  • W. A. Khan, Z. Arshad, A. Hobiny, S. Saleem, A. Al-Zubaidi and M. Irfan, “Impact of magnetized radiative flow of Sutterby nanofluid subjected to convectively heated wedge,” Int. J. Mod. Phys. B., vol. 36, no. 16, pp. 2250079, 2022. DOI: 10.1142/S0217979222500795.
  • M. Tabrez and W. A. Khan, “Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2135794.
  • W. A. Khan, M. Waqas, W. Chammam, Z. Asghar, U. A. Nisar and S. Z. Abbas, “Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with thermal radiation,” Comput Methods Programs Biomed, vol. 191, pp. 105396, 2020. DOI: 10.1016/j.cmpb.2020.105396.
  • S. P. Anjali Devi and B. Ganga, “Effects of viscous and joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium,” NAMC, vol. 14, no. 3, pp. 303–314, 2009. DOI: 10.15388/NA.2009.14.3.14497.
  • K. K. Jaber, “Joule heating and viscous dissipation on effects on MHD flow over a stretching porous sheet subjected to power law heat flux in presence of heat source,” OJFD, vol. 06, no. 03, pp. 156–165, 2016. DOI: 10.4236/ojfd.2016.63013.
  • M. Muskat, The Flow of Homogeneous Fluids through Porous Media, Ann Arbor, MI: JW Edwards, Inc., vol.191, pp. 6, 1946.
  • J. C. Slattery, “Flow of viscoelastic fluids through porous media,” AIChE J., vol. 13, no. 6, pp. 1066–1071, 1967. DOI: 10.1002/aic.690130606.
  • T. Hayat, K. Rafique, T. Muhammad, A. Alsaedi and M. Ayub, “Carbon nanotubes significance in Darcy‐Forchheimer flow,” Results Phys., vol. 8, pp. 26–33, 2018. DOI: 10.1016/j.rinp.2017.11.022.
  • M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied and M. R. Eid, “Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet,” Nanoscale Res Lett., vol. 7, no. 1, pp. 229, 2012. DOI: 10.1186/1556-276X-7-229.
  • E. Sparrow and R. Cess, Radiation Heat Transfer, Series in Thermal and Fluids Engineering. New York: McGraw-Hill, 1978.
  • F. Mabood, G. Bognar and A. Shafiq, “Impact on heat generation/absorption of magnetohydrodynamics OLdroyed-B fluid impinging on an inclined stretching sheet and radiation,” Sci Rep, vol. 10, no. 1, pp. 1768, 2020. DOI: 10.1038/s41598-020-74787-2.
  • S. K. Rawat and M. Kumar, “Cattaneo–Christov heat flux model in flow of copper water nanofluid through a stretching/shrinking sheet on stagnation point in presence of heat generation/absorption and activation energy,” Int. J. Comput. Math., vol. 6, pp. 112, 2020.
  • U. Khan, A. Zaib and A. Ishak, “Magnetic field effect on Sisko fluid containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip,” Publish. Open Access J., vol. 9, no. 9, pp. 921, 2021. DOI: 10.3390/math9090921.
  • M. G. Murtaza, E. E. Tzirtzilakis and M. Ferdows, “Similarity solutions of nonlinear stretched bio-magnetic flow and heat transfer with signum function and temperature power law geometries,” Int. Sci. Index, Math. Comput. Sci., vol. 12, pp. 170286, 2018.
  • M. D. Shamshuddin, F. Shahzad, W. Jamshed, O. Anwar Bég, M. R. Eid and T. A. Bég, “Thermo-solutal stratification and chemical reaction effects on radiative magnetized nanofluid flow along an exponentially stretching sensor plate: computational analysis,” J. Magnet. Magnetic Mater., vol. 565, pp. 170286, 2023. DOI: 10.1016/j.jmmm.2022.170286.
  • S. Shaheen, et al., “A case study of heat transmission in a Williamson fluid flow through a ciliated porous channel: A semi-numerical approach,” Case Stud. Therm. Eng., vol. 41, pp. 102523, 2023., DOI: 10.1016/j.csite.2022.102523.
  • A. K. M. Muktadir, M. D. Shamshuddin, M. Ferdows and M. R. Eid, “Heat and mass transport through bi-axial extending sheet with anisotropic slip and Entropy/Bejan on the 3D boundary layer hybrid nanofluid,” Proc. IMechE Part E: J. Process Mech. Eng., pp. 095440892211473, 2022. DOI: 10.1177/09544089221147394.
  • F. Shahzad, et al., “Thermal amelioration in heat transfer rate using Oldroyd-B model hybrid nanofluid by CNTs-based kerosene oil flow in solar collector applications,” Waves Random Complex Media, pp. 1–31, 2022. DOI: 10.1080/17555030.2022.2157511.
  • S. Shampine, Solving ODES with MATLAB, Cambridge University press, Cambridge, 2003.
  • Z. Asghar, R. A. Shah and N. Ali, “A computational approach to model gliding motion of an organism on a sticky slime layer over a solid substrate,” Biomech Model Mechanobiol, vol. 21, no. 5, pp. 1441–1455, 2022. DOI: 10.1007/s10237-022-01600-6.
  • Z. Asghar, K. Javid, M. Waqas, A. Ghaffari and W. A. Khan, “Cilia-Driven fluid flow in a cured channel: effects of complex wave and porous medium,” Fluid Dyn. Res, vol. 52, no. 1, pp. 015514, 2020. DOI: 10.1088/1873-7005/ab67d9.
  • Z. Asghar, M. Kousar, M. Waqas, M. Irfan, M. Bilal and W. A. Khan, “Heat generation in mixed convected Williamson liquid stretching flow under generalized Fourier concept,” Appl. Nanosci., vol. 10, no. 12, pp. 4439–4444, 2020. DOI: 10.1007/s13204-020-01500-0.
  • K. Javid, N. Ali and Z. Asghar, “Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic waves profiles,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, pp. 483, 2019. DOI: 10.1007/s40430-019-1993-3.
  • M. Khan and A. Shahzad, “On boundary layer flow of a Sisko fluid over a stretching sheet,” Quaestion. Math., vol. 36, no. 1, pp. 137–151, 2013. DOI: 10.2989/16073606.2013.779971.
  • R. Malik, M. Khan, A. Munir and W. A. Khan, “Flow and heat transfer in Sisko fluid with convective boundary conditions,” PLoS One., vol. 9, no. 10, pp. e107989, 2014. issue DOI: 10.1371/journal.pone.0107989.
  • R. Eid.Mohamed, A. Alsaedi, M. Taseer and H. Tasawar, “Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation,” Results Phys., vol. 7, pp. 4388–4393, 2017. DOI: 10.1016/j.rinp.2017.11.004.
  • B. K. Swain, B. C. Parida, S. Kar and N. Senapati, “Viscous dissipation and joule heating effect on MHD flow and heat transfer past a stretching embedded in a porous medium,” Heliyon, vol. 6, no. 10, pp. e05338, 2020. DOI: 10.1016/j.heliyon.2020.e05338.
  • H. Upreti, N. Joshi, A. K. Pandey and S. K. Rawat, “Numerical solution for Sisko nanofluid flow through stretching surface in a Darcy–Forchheimer porous medium with thermal radiation,” Heat Transf., vol. 50, no. 7, pp. 6572–6588, 2021. DOI: 10.1002/htj.22193.
  • L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous, stretching surface with variable temperature,” J Heat Transf., vol. 107, pp. 249–250, 1985.
  • M. Ferdows, K. Kaino and J. C. Crepeau, “Natural convection of MHD flow pasr a semi-infinite vertical porous plate in a porous medium with internal heat generation,” Int. J. Heat Technol., 2007.
  • I. A. Hassanien, A. A. Abdullah and R. S. R. Gorla, “Flow and heat transfer in a power-law fluid over a non-isothermal stretching sheet,” Math. Comput. Model., vol. 28, no. 9, pp. 105–116, 1998. DOI: 10.1016/S0895-7177(98)00148-4.
  • F. Shahzad, et al., “Second-order convergence analysis for Hall effect and electromagnetic force on ternary nanofluid flowing via rotating disk,” Sci. Rep., vol. 12, no. 1, pp. 18769, 2022., DOI: 10.1038/s41598-022-23561-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.