Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
88
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation on conjugate behavior of heat transfer and its augmentation in a turbulent wall-jet flow on a heated plate in motion

ORCID Icon & ORCID Icon
Pages 1259-1277 | Received 14 Sep 2022, Accepted 02 Apr 2023, Published online: 21 Apr 2023

References

  • J. Sengupta, B. G. Thomas and M. A. Wells, “The use of water cooling during the continuous casting of steel and aluminum alloys,” Metall Mat Trans A., vol. 36, no. 1, pp. 187–204, 2005. DOI: 10.1007/s11661-005-0151-y.
  • Q. Deng, H. Wang, W. He and Z. Feng, “Cooling characteristic of a wall jet for suppressing crossflow effect under conjugate heat transfer condition,” Aerospace., vol. 9, no. 1, pp. 29, 2022. DOI: 10.3390/aerospace9010029.
  • J. G. Eriksson, R. I. Karlsson and J. Persson, “An experimental study of a two-dimensional plane turbulent wall jet,” Exp. Fluids, vol. 25, no. 1, pp. 50–60, 1998. DOI: 10.1007/s003480050207.
  • V. M. Behera and S. K. Rathore, “Numerical investigation of turbulent offset jet flow over a moving flat plate using low-Reynolds number turbulence model,” J. Therm. Sci. Eng. Appl., vol. 13, no. 5, pp. 1–15, 2021. DOI: 10.1115/1.4049751.
  • B. E. Launder and W. Rodi, “The turbulent wall jet,” Prog. Aerosp. Sci., vol. 19, pp. 81–128, 1979. DOI: 10.1016/0376-0421(79)90002-2.
  • P. Y. Nizou, “Heat and momentum transfer in a plane turbulent wall jet,” J. Heat Mass Transfer Trans. ASME, vol. 103, no. 1, pp. 138–140, 1981. DOI: 10.1115/1.3244407.
  • R. S. AbdulNour, K. Willenborg, J. J. McGrath, J. F. Foss and B. S. AbdulNour, “Measurements of the convection heat transfer coefficient for a planar wall jet: Uniform temperature and uniform heat flux boundary conditions,” Exp. Therm. Fluid Sci., vol. 22, no. 3-4, pp. 123–131, 2000. DOI: 10.1016/S0894-1777(00)00018-2.
  • A. Mokni, J. Kechiche, H. Mhiri, G. L. Palec and P. Bournot, “Inlet conditions effects on vertical wall jets in forced and mixed convection regimes,” Int. J Therm. Sci., vol. 48, no. 10, pp. 1884–1893, 2009. DOI: 10.1016/j.ijthermalsci.2009.02.021.
  • I. Z. Naqavi, J. C. Tyacke and P. G. Tucker, “A numerical study of a plane wall jet with heat transfer,” Int. J. Heat Fluid Flow., vol. 63, pp. 99–107, 2017. DOI: 10.1016/j.ijheatfluidflow.2016.07.012.
  • A. Kumari and A. Kumar, “Heat transfer and fluid flow characteristics of a turbulent wall jet with a wavy wall,” Int. J. Heat Fluid Flow, vol. 87, pp. 108749, 2021. DOI: 10.1016/j.ijheatfluidflow.2020.108749.
  • X. W. Zhu, L. Zhu and J. Q. Zhao, “An in-depth analysis of conjugate heat transfer process of impingement jet,” Int. J. Heat Mass Transf., vol. 104, pp. 1259–1267, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.075.
  • S. K. Rathore, “Study of conjugate heat transfer from heated plate by turbulent offset jet in presence of freestream motion using low-Reynolds number modeling,” JAFM., vol. 12, no. 2, pp. 617–630, 2019. DOI: 10.29252/jafm.12.02.28974.
  • P. R. Kanna and M. K. Das, “Conjugate forced convection heat transfer from a flat plate by laminar plane wall jet flow,” Int. J. Heat Mass Transf., vol. 48, no. 14, pp. 2896–2910, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.01.033.
  • A. M. Achari and M. K. Das, “Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate,” Heat Mass Transf., vol. 53, no. 3, pp. 1017–1035, 2017. DOI: 10.1007/s00231-016-1873-7.
  • Z. Yang and T. H. Shih, “A new time scale based k-ε model for near wall turbulence,” Am. Inst. Aeronaut. Astronaut. J., vol. 31, no. 7, pp. 1191–1198, 1993. DOI: 10.2514/3.11752.
  • V. M. Behera and S. K. Rathore, “The effect of plate motion on heat transfer enhancement using turbulent offset jet flow: A conjugate approach,” Int. Commun. Heat Mass Transf., vol. 136, pp. 106173, 2022.106173. DOI: 10.1016/j.icheatmasstransfer.2022.
  • E. Vishnuvardhanarao and M. K. Das, “Computational study of heat transfer in a conjugate turbulent wall jet flow at high Reynolds number,” J. Heat Mass Transf. Trans. ASME., vol. 130, pp. 1–7, 2008.
  • E. Vishnuvardhanarao and M. K. Das, “Computational study of heat transfer in a conjugate turbulent wall jet flow with constant heat flux,” Int. J. Numer. Methods Heat Fluid Flow., vol. 19, no. 1, pp. 39–52, 2009. DOI: 10.1108/09615530910922143.
  • S. C. Godi, A. Pattamatta and C. Balaji, “Heat transfer from a single and row of three dimensional wall jets – A combined experimental and numerical study,” Int. J. Heat Mass Transf., vol. 159, pp. 119801, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119801.
  • G. Biswas and V. Eswaran, Turbulent Flows: Fundamentals, Experiments and Modeling, IIT Kanpur Series of Advanced Texts, New Delhi, Narosa Publishing House, India, 2002.
  • M. Behnia, S. Parneix and P. Durbin, “Simulation of jet impingement heat transfer with the k‐e‐v2 model,” Center for Turbulence Research, Ann. Res. Briefs, Stanford University, Stanford, CA, 1996, pp. 1–14.
  • G. Nasif, R. Balachandar and R. M. Barron, “Conjugate analysis of wall conduction effects on the thermal characteristics of impinging jets,” Int. J. Heat Mass Transf., vol. 116, pp. 259–272, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.034.
  • Y. Jaluria and A. P. Singh, “Temperature distribution in a moving material subjected to surface energy transfer,” Comput. Methods Appl. Mech. Eng., vol. 41, no. 2, pp. 145–157, 1983. DOI: 10.1016/0045-7825(83)90003-8.
  • J. Chen, T. Wang and D. A. Zumbrunnen, “Numerical analysis of convective heat transfer from a moving plate cooled by an array of submerged planar jets,” Num. Heat Transf. Part A: Appl., vol. 26, no. 2, pp. 141–160, 1994. DOI: 10.1080/10407789408955985.
  • M. N. Ozisik, Heat Conduction, 2nd ed., New York: John Wiley & Sons Inc., 2002.
  • J. P. Van Doormaal and G. D. Raithby, “Enhancements of SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transf. Part A., vol. 7, no. 2, pp. 147–163, 1984. DOI: 10.1080/01495728408961817.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, 2nd ed., Harlow: Pearson Education Limited, 2007.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publishing Corporation, USA, 1980.
  • J. E. Bardina, P. G. Huang and T. J. Coakley, “Turbulence modeling validation, testing and development,” NASA Tech. Memorandam, Report 110446, pp. 1–100, 1997.
  • I. Wygnanski, Y. Katz and E. Horev, “On the applicability of various scaling laws to the turbulent wall jet,” J. Fluid Mech., vol. 234, no. 1, pp. 669–690, 1992. DOI: 10.1017/S002211209200096X.
  • P. Y. Nizou and T. Tida, “Transferts de chaleur et de quantite de mouvement dans les jets pariktaux plans turbulents,” Int. J. Heat Mass Transf., vol. 38, no. 7, pp. 1187–1200, 1995. DOI: 10.1016/0017-9310(94)00235-N.
  • A. H. Beitelmal, M. A. Saad and C. D. Patel, “The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet,” Int. J. Heat Fluid Flow., vol. 21, no. 2, pp. 156–163, 2000. DOI: 10.1016/S0142-727X(99)00080-6.
  • J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe and G. Tchobanoglous, MWH's Water Treatment: Principles and Design, 3rd ed., Hoboken, NJ: John Wiley Sons Inc., 2012, pp. 1861–1862.
  • F. P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., New Delhi: Wiley & Sons, India, 2009.
  • T. H. Chilton and A. P. Colburn, “Mass transfer (absorption) coefficients. Prediction from data on heat transfer and fluid friction prediction from,” Ind. Eng. Chem., vol. 26, no. 11, pp. 1183–1187, 1934. DOI: 10.1021/ie50299a012.
  • C. J. Geankoplis, Transport Process and Unit Operations, 3rd ed., Hoboken, NJ: Prentince Hall International, 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.