Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
335
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of filling ratio, number of loops, and transverse distance on the performance of pulsating heat pipe in a microchannel heat sink

, , , &
Pages 1278-1299 | Received 31 Jan 2023, Accepted 31 Mar 2023, Published online: 26 Apr 2023

References

  • M. Ahmadian-Elmi, E. Rasouli, K. Vafai, and S. S. Nourazar, “Parametric investigation of a rectangular microchannel utilizing the internal longitudinal fins to enhance its hydraulic and thermal characteristics,” Int. Commun. Heat Mass Transf., vol. 133, p. 105946, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105946.
  • M. Ahmadian-Elmi, M. Mohammadifar, K. Vafai, and S. S. Nourazar, “Investigation of the optimal configuration of a highly conductive material embedded in a triangular fin,” Numer. Heat Transf. A Appl., vol. 83, no. 8, pp. 919–934, 2023. DOI: 10.1080/10407782.2022.2157352.
  • A. Ghahremannezhad and K. Vafai, “Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates,” Int. J. Heat Mass Transf., vol. 122, pp. 1313–1326, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.024.
  • D. Deng, L. Zeng, and W. Sun, “A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks,” Int. J. Heat Mass Transf., vol. 175, p. 121332, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121332.
  • H. M. Ali, “Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review,” J. Energy Storage, vol. 26, p. 100986, 2019. DOI: 10.1016/j.est.2019.100986.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron. Dev. Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • S. Lu and K. Vafai, “A comparative analysis of innovative microchannel heat sinks for electronic cooling,” Int. Commun. Heat Mass Transf., vol. 76, pp. 271–284, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.04.024.
  • A. Ghahremannezhad, H. Xu, M. Alhuyi Nazari, M. Hossein Ahmadi, and K. Vafai, “Effect of porous substrates on thermohydraulic performance enhancement of double layer microchannel heat sinks,” Int. J. Heat Mass Transf., vol. 131, pp. 52–63, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.040.
  • M. Lori and K. Vafai, “Thermal and hydraulic performance of rectangular microchannel heat sinks with trapezoidal porous configuration,” Numer. Heat Transf. A: Appl., vol. 81, no. 3-6, pp. 72–93, 2022. DOI: 10.1080/10407782.2022.2038969.
  • M. S. Lori and K. Vafai, “Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs,” Appl. Therm. Eng., vol. 205, p. 118059, 2022. DOI: 10.1016/j.applthermaleng.2022.118059.
  • D.-Y. Lee and K. Vafai, “Comparative analysis of jet impingement and microchannel cooling for high heat flux applications,” Int. J. Heat Mass Transf., vol. 42, no. 9, pp. 1555–1568, 1999. DOI: 10.1016/S0017-9310(98)00265-8.
  • K. Vafai and L. Zhu, “Analysis of two-layered micro-channel heat sink concept in electronic cooling,” Int. J. Heat Mass Transf., vol. 42, no. 12, pp. 2287–2297, 1999. DOI: 10.1016/S0017-9310(98)00017-9.
  • K. Vafai and A.-R. Khaled, “Analysis of flexible microchannel heat sink systems,” Int. J. Heat Mass Transf., vol. 48, no. 9, pp. 1739–1746, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.11.020.
  • A.-R. Khaled and K. Vafai, “Cooling augmentation using microchannels with rotatable separating plates,” Int. J. Heat Mass Transf., vol. 54, no. 15–16, pp. 3732–3739, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.054.
  • M. Pan, P. Huang, and K. Vafai, “Investigation of the blockage conditions in a laminated-sheet microchannel reactor,” Chem. Eng. Technol., vol. 40, no. 12, pp. 2283–2294, 2017. DOI: 10.1002/ceat.201700189.
  • S. Lu and K. Vafai, “Thermal performance optimization of the 3D ICs employing the integrated chip-size double-layer or multi-layer microchannels,” J. Heat Transf., vol. 145, p. 032501, 2022. DOI: 10.1115/1.4055245.
  • A. Rajalingam and S. Chakraborty, “Effect of micro-structures in a microchannel heat sink – a comprehensive study,” Int. J. Heat Mass Transf., vol. 154, p. 119617, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119617.
  • M. Vajdi, F. Sadegh Moghanlou, E. Ranjbarpour Niari, M. Shahedi Asl, and M. Shokouhimehr, “Heat transfer and pressure drop in a ZrB2 microchannel heat sink: a numerical approach,” Ceram. Int., vol. 46, no. 2, pp. 1730–1735, 2020. DOI: 10.1016/j.ceramint.2019.09.146.
  • S. Y. Jung and H. Park, “Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink,” Int. J. Heat Mass Transf., vol. 179, p. 121729, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121729.
  • A. Yildizeli and S. Cadirci, “Multi objective optimization of a micro-channel heat sink through genetic algorithm,” Int. J. Heat Mass Transf., vol. 146, p. 118847, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118847.
  • P. Bhandari and Y. K. Prajapati, “Thermal performance of open microchannel heat sink with variable pin fin height,” Int. J. Therm. Sci., vol. 159, p. 106609, 2021. DOI: 10.1016/j.ijthermalsci.2020.106609.
  • Y. H. Pan, R. Zhao, X. H. Fan, Y. L. Nian, and W. L. Cheng, “Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink,” Int. J. Heat Mass Transf., vol. 163, p. 120461, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.120461.
  • W. Sanhan, K. Vafai, N. Kammuang-Lue, P. Terdtoon, and P. Sakulchangsatjatai, “Numerical simulation of flattened heat pipe with double heat sources for CPU and GPU cooling application in laptop computers,” J. Comput. Des. Eng., vol. 8, no. 2, pp. 524–535, 2021. DOI: 10.1093/jcde/qwaa091.
  • S. Maneemuang, K. Vafai, N. Kammuang-Lue, P. Terdtoon, and P. Sakulchangsatjatai, “Analysis of the optimum configuration for the capillary rise and the permeability of the fiber wick structure for heat removal in heat pipes,” Heat Mass Transf., vol. 57, no. 9, pp. 1513–1526, 2021. DOI: 10.1007/s00231-021-03025-w.
  • M. H. Zolfagharnasab, M. Z. Pedram, and K. Vafai, “A robust single-phase approach for the numerical simulation of heat pipe,” Int. Commun. Heat Mass Transf., vol. 132, p. 105894, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105894.
  • M. Siritan, K. Vafai, N. Kammuang-Lue, P. Terdtoon, and P. Sakulchangsatjatai, “An innovative design for a solar water heating system utilizing a flat-shaped heat pipe,” J. Sol. Energy Eng., vol. 145, no. 5, pp. 1–18, 2023. DOI: 10.1115/1.4056624.
  • S. Lu and K. Vafai, “Optimization of the thermal performance of three-dimensional integrated circuits utilizing rectangular-shaped and disk-shaped heat pipes,” J. Heat Transf., vol. 144, no. 6, p. 061901, 2022. DOI: 10.1115/1.4053803.
  • V. S. Nikolayev, “Physical principles and state-of-the-art of modeling of the pulsating heat pipe: a review,” Appl. Therm. Eng., vol. 195, p. 117111, 2021. DOI: 10.1016/j.applthermaleng.2021.117111.
  • H. Y. Noh and S. J. Kim, “Numerical simulation of pulsating heat pipes: Parametric investigation and thermal optimization,” Energy Convers. Manag., vol. 203, p. 112237, 2020. DOI: 10.1016/j.enconman.2019.112237.
  • Y. Xu, Y. Xue, H. Qi, and W. Cai, “Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids,” Int. J. Heat Mass Transf., vol. 157, p. 119727, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119727.
  • D. T. Vo, H. T. Kim, J. Ko, and K. H. Bang, “An experiment and three-dimensional numerical simulation of pulsating heat pipes,” Int. J. Heat Mass Transf., vol. 150, p. 119317, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119317.
  • G. Rouaze, J. B. Marcinichen, F. Cataldo, P. Aubin, and J. R. Thome, “Simulation and experimental validation of pulsating heat pipes,” Appl. Therm. Eng., vol. 196, p. 117271, 2021. DOI: 10.1016/j.applthermaleng.2021.117271.
  • M. Zufar, P. Gunnasegaran, H. M. Kumar, and K. C. Ng, “Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance,” Int. J. Heat Mass Transf., vol. 146, p. 118887, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118887.
  • Q. Li et al., “Study on the effect of the adiabatic section parameters on the performance of pulsating heat pipes,” Appl. Therm. Eng., vol. 180, p. 115813, 2020. DOI: 10.1016/j.applthermaleng.2020.115813.
  • B. Markal, A. C. Candere, M. Avci, and O. Aydin, “Effect of double cross sectional ratio on performance characteristics of pulsating heat pipes,” Int. Commun. Heat Mass Transf., vol. 127, p. 105583, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105583.
  • Z. Kang, D. Shou, and J. Fan, “Numerical study of a novel Single-loop pulsating heat pipe with separating walls within the flow channel,” Appl. Therm. Eng., vol. 196, p. 117246, 2021. DOI: 10.1016/j.applthermaleng.2021.117246.
  • M. Xing, R. Wang, and J. Yu, “The impact of gravity on the performance of pulsating heat pipe using surfactant solution,” Int. J. Heat Mass Transf., vol. 151, p. 119466, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119466.
  • J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • N. Saha, P. K. Das, and P. K. Sharma, “Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe,” Int. J. Heat Mass Transf., vol. 74, pp. 238–250, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.02.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.